Answer:
See explanation
Explanation:
The mechanism for the formation of bromohexane from hexene has been clearly shown in the image attached to this answer.
Hexene is attacked by HBr and a carbocation is first formed as shown. The carbocation is flat and planar. it can be attacked on either face by the bromide ion.
Attack on either faces yields a racemic mixture of the R and S enantiomer as shown in the image.
You can use the mechanism shown to fill in the structures.
Answer:
Yes, chloromethane has stronger intermolecular forces than a pure sample of methane has.
Explanation:
In both methane and chloromethane, there are weak dispersion forces. However, in methane, the dispersion forces are the only intermolecular forces present. Also, the lower molar mass of methane means that it has a lower degree of dispersion forces.
For chloromethane, there is in addition to dispersion forces, dipole-dipole interaction arising from the polar C-Cl bond in the molecule. Also the molar mass of chloromethane is greater than that of methane implying a greater magnitude of dispersion forces in operation.
Therefore, chloromethane has stronger intermolecular forces than a pure sample of methane has.
You need to use Stoichiometry
Answer:
weathering
Explanation:
one brakes it down the other carries it away