0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l
12.0g x 1 mol / 63.546g = 0.188839581mol
<span>So, for every 1 mole, we have 6.022 x 10^23 of whatever we're measuring. This gives us a conversion factor of (1 mole / 6.022 x 10^23 atoms) or (6.022 x 10^23 atoms / 1 mole).
</span>
0.188839581 mol x (6.022 x 10^23 atoms) / 1 mol = 1.137191955 x 10^23
<span>Remember from before that we are limited to 3 significant figures. Since our calculations are complete, we can now round down to: 1.14 x 10^23 </span>
<span>That should be your answer!
Hope it helps!
xo</span>
conversion between mass and moles#
<em> </em>
<em>A substance's molar mass is calculated by multiplying its relative atomic mass by the molar mass constant (1 g/mol). The molar mass constant can be used to convert mass to moles. By multiplying a given mass by the molar mass, the amount of moles of the substance can be calculated.</em>
<em> </em>
the nebular theory states that the solar systems developing <u><em>rotations </em></u>revolve around sun. it is located in the milky-way. revolving around the <u><em>sun</em></u>, with <u><em>gravity</em></u> pulling it, an interstellar cloud of dust and gas, is formed. (i.e. the nebula that we are speaking)
this formation is a<u><em> protostar</em></u>. the idea in the theory states that the <u><em>nebula</em></u> has flattened into a <u><em>disk</em></u> called the "protoplanetary disk"; and over time, the debreis eventually formed this disk. (i.e. creating the milky-way)
hopefully this helped, thank you!! :D