The question in English
<span>A dance was attended by 270 people. If the gentlemen tickets cost 100 pesos and the lady tickets 80 pesos and 24800 pesos were collected for all the tickets. How many women and how many men attended the dance?
let
x---------> the number of men
y--------> the number of women
we know that
x+y=270----> x=270-y-----> equation 1
100x+80y=24800-------> equation 2
substitute equation 1 in equation 2
100*[270-y]+80y=24800----> 27000-100y+80y=24800
20y=2200-----> y=110
x=270-y----> x=270-110----> x=160
the answer is
the number of men ---> 160
the number of women----> 110
the answer in Spanish
</span>hagamos
x--------->la cantidad de hombres
y--------->la cantidad de mujeres
Sabemos que
x+y=270----> x=270-y-----> ecuacion 1
100x+80y=24800-------> ecuacion 2
sustituimos la ecuacion 1 en la ecuacion 2
100*[270-y]+80y=24800----> 27000-100y+80y=24800
20y=2200-----> y=110
x=270-y----> x=270-110----> x=160
La respuesta es
la cantidad de hombres es 160
la cantidad de mujeres es 110
182 games
24 on each shelf
basicaaly
x shelves is more than or equal to 182 games
1 shelf=24
x times 24>182
divide both sides by 24
x>7 and 4/24
x has to be a whole number since you can't have fractional shelves
you have to have more shelves since less shelves won't allow you to carry all of them
round up
7 and something rounded u is 8
8 shelves (if you are a weird store that has fractional shelves then the answer is 7 and 1/6 shelves)
Use the compound interest formula.
A = P*(1 +r/n)^(n*t)
where P is the principal, r is the annual rate, n is the number of compoundings per year, and t is the number of years.
For the first investment, ...
A = 208,000*(1 +.08/4)^(4*5) = 309,077.06
For the second investment, ...
A = 218,000*(1 +.07/2)^(2*4) = 287,064.37
Totaling both investments at maturity, Megan has $596,141.43.
6>x take 12 from both sides
Answer:
x = -3
y = 0
Step-by-step explanation:
<u>Given</u><u> </u><u>equations</u><u> </u><u>:</u><u>-</u><u> </u>
<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u>
<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u>
<u>From</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u><u> </u><u> </u>
<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u>
<u>-x</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>-</u><u> </u><u>2</u><u>y</u><u> </u>
<u>x</u><u> </u><u>=</u><u> </u><u>2</u><u>y</u><u> </u><u>-</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u>
<u>From</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u><u> </u>
<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u>
<u>2</u><u>x</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>+</u><u> </u><u>3</u><u>y</u><u> </u>
<u>
</u>
<u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>
<u>Equating</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u><u> </u><u>and</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>
<u>x</u><u> </u><u>=</u><u> </u><u>x</u><u> </u>
<u>
</u>
4y - 6 = -6 + 3y
4y - 3y = -6 + 6
y = 0
Putting value of y in ( iii )
x = 2y - 3
x = 2 ( 0 ) - 3
x = -3