To solve this problem it is necessary to apply the concepts related to the conservation of the Gravitational Force and the centripetal force by equilibrium,


Where,
m = Mass of spacecraft
M = Mass of Earth
r = Radius (Orbit)
G = Gravitational Universal Music
v = Velocity
Re-arrange to find the velocity



PART A ) The radius of the spacecraft's orbit is 2 times the radius of the earth, that is, considering the center of the earth, the spacecraft is 3 times at that distance. Replacing then,


From the speed it is possible to use find the formula, so



Therefore the orbital period of the spacecraft is 2 hours and 24 minutes.
PART B) To find the kinetic energy we simply apply the definition of kinetic energy on the ship, which is



Therefore the kinetic energy of the Spacecraft is 1.04 Gigajules.
Answer:
Yes, yes it would since we need light
Explanation:
Answer:
It corresponds to a distance of 100 parsecs away from Earth.
Explanation:
The angle due to the change in position of a nearby object against the background stars it is known as parallax.
It is defined in a analytic way as it follows:

Where d is the distance to the star.
(1)
Equation (1) can be rewritten in terms of d:
(2)
Equation (2) represents the distance in a unit known as parsec (pc).
The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).
For the case of (
):


Hence, it corresponds to a distance of 100 parsecs away from Earth.
<em>Summary:</em>
Notice how a small parallax angle means that the object is farther away.
Key terms:
Parsec: Parallax of arc second
Answer: 15m/s
Explanation: <u>Average</u> <u>Velocity</u> is vector describing the total displacement of an object and the time taken to change its position. It is represented as:

At t₁ = 1.0s, displacement x₁ is:

x(1) = 28
At t₂ = 4.0s:

x(4) = 73
Then, average speed is

v = 15
The average velocity of a car between t₁ = 1s and t₂ = 4s is 15m/s
You are correct...amplitude will be the answer