10°c
Explanation:
Given parameter;
Lower fixed point = 30mm
Upper fixed point = 180mm
Reading = 45mm
Unknown:
The degree celcuis temperature at 45mm = ?
Solution:
To solve this problem we simply compare the mm- scale to the celcius - scale that we know.
The upper fixed point is the boiling point of water
Lower fixed point is the freezing point of water
This shows that both the upper and lower fixed point of both thermometers are the same;
mm-scale °c scale
180mm 100°c
45mm x
30mm 0°c
Solving;

x (150) = 100 x 15
x = 10°c
learn more:
Temperature scales brainly.com/question/1603430
#learnwithBrainly
<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>
QUESTION)</u></h3>
Assuming that the initial velocity of the jumper is zero, on Earth any freely falling object has an acceleration of 9.8 m/s².
<em>✔ We have : a = v/Δt = ⇔ Δt = v/a </em>
- Δt = (√2xgxh)/9,8
- Δt = (14√10)/9,8
- Δt ≈ 4,5 s
Answer:
Ratio table of ordered pairs represent proportional relationship .
<em>Hope </em><em>it</em><em> is</em><em> helpful</em><em> to</em><em> you</em>
Answer:
Por ela ter batido na trave, não tem como voltar 2x mais forte, por que toda ação correspondente a uma reação de igual intensidade, mas que atua no sentido oposto
Explanation:
Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J