Using
V = Amplitude x angular frequency(omega)
But omega= 2πf
= 2πx875
=5498.5rad/s
So v= 1.25mm x 5498.5
= 6.82m/s
B. .Acceleration is omega² x radius= 104ms²
Answer:
Norway, Sweden, Finland and Iceland
Explanation:
Sea ice is a frozen seawater that floats on the ocean surface. It is formed between the Antarctic and Arctic hemisphere. It disappears in summer but not completely. The countries that experienced sea ice in 1986 were eight (8) in number but the countries bordered by open water were in September 2017 were Norway, Iceland, Finland and Russia.
The universal law of gravitation states that:
Every object in the universe attracts every other object with a force which is proportional to the product of their masses and inversely proportional to the square of distance between them.
It means that if the gravitational force is F, then if the distance is decreased by 5 times, then the new gravitation force is:
F/5² = F/25
To explain, I will use the equations for kinetic and potential energy:

<h3>Potential energy </h3>
Potential energy is the potential an object has to move due to gravity. An object can only have potential energy if 1) <u>gravity is present</u> and 2) <u>it is above the ground at height h</u>. If gravity = 0 or height = 0, there is no potential energy. Example:
An object of 5 kg is sitting on a table 5 meters above the ground on earth (g = 9.8 m/s^2). What is the object's gravitational potential energy? <u>(answer: 5*5*9.8 = 245 J</u>)
(gravitational potential energy is potential energy)
<h3>Kinetic energy</h3>
Kinetic energy is the energy of an object has while in motion. An object can only have kinetic energy if the object has a non-zero velocity (it is moving and not stationary). An example:
An object of 5 kg is moving at 5 m/s. What is the object's kinetic energy? (<u>answer: 5*5 = 25 J</u>)
<h3>Kinetic and Potential Energy</h3>
Sometimes, an object can have both kinetic and potential energy. If an object is moving (kinetic energy) and is above the ground (potential), it will have both. To find the total (mechanical) energy, you can add the kinetic and potential energies together. An example:
An object of 5 kg is moving on a 5 meter table at 10 m/s. What is the objects mechanical (total) energy? (<u>answer: KE = .5(5)(10^2) = 250 J; PE = (5)(9.8)(5) = 245 J; total: 245 + 250 = 495 J</u>)