Answer:
See Explanation
Explanation:
The question is incomplete, as there are no diagrams or options to provide more information to the question.
The general explanation is as follows:
For the object not to move
(1): The forces acting on the object must opposite each other. i.e. if force A acts at the right (or positive direction), force B will act at the left (or negative direction).
(2) The two forces must be equal.
So, for instance:
If the pair of forces are 5N and 5N in opposite directions, the object wil not move.
However, if one of the forces is greater, the object will move towards the direction of the greater force.
Answer:
4.06 Hz
Explanation:
For simple harmonic motion, frequency is given by
where k is spring constant and m is the mass of the object.
Substituting 0.2 Kg for mass and 130 N/m for k then

Answer:
66.5N
Explanation:
F = kx
Where F = force
K = spring constant
x = compression
Given
K = 950N/m
x = 7.0cm
F = ?
First convert the compression to meters .
7.0cm = 7.0 x 0.01
= 0.07 meters
Therefore
F = 950 x 0.07
= 66.5N
Answer: True
Explanation: Because of the way this water cycle has always circulated our planet, there is indeed a chance that the water in your glass is the same water that thirsty dinosaurs were drinking about 65 million years ago
The work done occurs only in the direction the block was moved - horizontally. Work is given by:
W = F(h) * d
Where F(h) is the force applied in that direction (horizontal) and d is the distance in that direction. In this case, F(h) is the horizontal component of the applied force, F(app). However, the question doesn't give us F(app), so we need to find it some other way.
Since the block is moving at a constant speed, we know the horizontal forces must be balanced so that the net force is 0. This means that F(h) must be exactly balanced by the friction force, f. We can express F(h) as a function of F(app):
F(h) = F(app)cos(23)
Friction is a little trickier - since the block is being PUSHED into the ground a bit by the vertical component of the applied force, F(v), the normal force, N, is actually a bit more than mg:
N = mg + F(v) = mg + F(app)sin(23)
Now we can get down to business and solve for F(app) - as mentioned above:
F(h) = f
F(h) = uN
F(h) = u * (mg + F(v))
F(app)cos(23) = 0.20 * (33 * 9.8 + F(app)sin(23))
F(app) = 76.8
Now that we have F(app), we can find the exact value of F(h):
F(h) = F(app)cos(23)
F(h) = 76.8cos(23)
F(h) = 70.7
And now that we have F(h), we can find W:
W = F(h) * d
W = 70.7 * 6.1
W = 431.3
Therefore, the work done by the worker's force is 431.3 J. This also represents the increase in thermal energy of the block-floor system.