The mass would still be the same 25.0 g but the volume would be bigger
Answer:
Ionic or electrovalent bonds
Explanation:
Ionic or electrovalent bonds are interatomic or intramolecular bonds which are formed between two kinds of atoms having a large electronegativity difference usually 2.1.
Electronegativity is the property that combines the ability of an atom to gain or lose electrons. It is expressed as the tendency with which atoms of elements attracts valence electrons in a chemical bond.
In this bond type, a metal transfers its electrons to a more electronegative atom which is a non-metal.
Answer:
Transition Metals
Explanation:
The elements in groups 3-12 are called Transition Metals. These groups contain metals that usually form multiple cations. All other groups on the table (1, 2, 13-18) are called Main Group Elements.
Answer:
Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.
We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.
Flip the ratio so the units of atoms of fluorine cancel each other out.
Condense into 1 fraction.
Divide.
The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.
4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
A) For balanced chemical equation: 2HgO(s) → 2Hg(l) + O₂(g).
1) Mole ratio 1: n(HgO) : n(Hg) = 2 : 2 (1 : 1).
2) Mole ratio 2: n(HgO) : n(O₂) = 2 : 1.
3) Mole ratio 3: n(Hg) : n(O₂) = 2 : 1.
B) Balanced chemical equation: 4NH₃(g) + 6NO(g) → 5N₂(g) + 6H₂O(l).
1) Mole ratio 1: n(NH₃) : n(NO) = 4 : 6 (2 : 3).
2) Mole ratio 2: n(NH₃) : n(N₂) = 4 : 5.
3) Mole ratio 3: n(NH₃) : n(H₂O) = 4 : 6 (2 : 3).
4) Mole ratio 4: n(NO) : n(N₂) = 6 : 5.
5) Mole ratio 5: n(NO) : n(H₂O) = 6 : 6 (1 :1).
6) Mole ratio 6: n(N₂) : n(H₂O) = 5 : 6.