the reaction is
2NO(g) + 2H2(g) <—> N2(g) + 2H2O (g)
Kc = [N2] [ H2O]^2 / [NO]^2 [ H2]^2
Given
moles of NO = 0.124 therefore [NO] = moles /volume = 0.124 /2 = 0.062
moles of H2 = 0.0240 , therefore [H2] = moles / volume = 0.0240 / 2 = 0.012
moles of N2 = 0.0380 , therefore [N2] = moles / volume = 0.0380 / 2 = 0.019
moles of H2O = 0.0276 , therefore [H2O] = moles / volume = 0.0276 / 2 = 0.0138
Kc = (0.019) ( 0.0138)^2 / (0.062)^2 ( 0.012)^2 = 6.54
Answer:
B- Sodium loses an electron.
D- Fluorine gains an electron.
Sodium is oxidized.
Explanation:
The reaction equation is given as:
Na + F → NaF
In this reaction, Na is the reducing agent. It loses an electron and then becomes oxidized. By so doing, Na becomes isoelectronic with Neon.
Fluorine gains the electron and then becomes reduced. This makes fluorine also isoelectronic with Neon.
This separation of charges on the two species leads to an electrostatic attraction which forms the ionic bonds.
Answer:
Radioactive decay is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha decay, beta decay, and gamma decay, all of which involve emitting one or more particles or photons.
Explanation: