The concentration of the sodium hydroxide solution in mol/l is 0.176 M.
Concentration is the abundance of a constituent divided by way of the overall volume of an aggregate. several sorts of mathematical descriptions may be outstanding: mass concentration, molar concentration, variety concentration, and extent awareness.
Given
V =25 ml = 0.025 L
M = 0.1
C₁ = 0.1
V₁ = 21.50 = 0.022 L
C₂ = ?
V₂ = 25 ml = 0.025 L
C₁V₁ = C₂V₂
C₂ = C₁V₁ / V₂
= 0.1 * 0.022 * 2 / 0.025
= 0.176 M
The concentration of a substance is the quantity of solute found in a given amount of solution. Concentrations are normally expressed in terms of molarity, defined because of the variety of moles of solute in 1 L of answer.
The Concentration of an answer is a measure of the quantity of solute that has been dissolved in a given amount of solvent or answer. A concentrated answer is one that has a rather huge quantity of dissolved solute.
Learn more about concentration here:-brainly.com/question/26255204
#SPJ1
Answer:
M = 1.26
Explanation:
Molarity = mole of solution/liters of solution
435mL/1000 = .435L
Plugging in the numbers into the formula, we get:
Molarity = .550 mol/.435L = 1.26 M
Either it’s, it is released when the reaction is complete or it is changed into atoms of carbon and oxygen during the reaction
What is your question please write properly>-< >_
Answer : The rate constant at 785.0 K is, 
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at
= 
= rate constant at
= ?
= activation energy for the reaction = 262 kJ/mole = 262000 J/mole
R = gas constant = 8.314 J/mole.K
= initial temperature = 
= final temperature = 
Now put all the given values in this formula, we get:
![\log (\frac{K_2}{6.1\times 10^{-8}s^{-1}})=\frac{262000J/mole}{2.303\times 8.314J/mole.K}[\frac{1}{600.0K}-\frac{1}{785.0K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7B6.1%5Ctimes%2010%5E%7B-8%7Ds%5E%7B-1%7D%7D%29%3D%5Cfrac%7B262000J%2Fmole%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B600.0K%7D-%5Cfrac%7B1%7D%7B785.0K%7D%5D)

Therefore, the rate constant at 785.0 K is, 