Answer:
157.8 J
Explanation:
m = mass of the cylinder = 7 kg
h = height difference in top and bottom of the incline = 2.3 m
g = acceleration due to gravity = 9.8 m/s²
TE = Total Energy at the bottom
PE = Gravitational potential energy at the top
Using conservation of energy
Total Energy at the bottom = Gravitational potential energy at the top
TE = PE
TE = m g h
TE = (7) (9.8) (2.3)
TE = 157.8 J
According to Newton second law of motion, the resultant force is directly proportional to the rate of change in momentum while maintaining other factors constant. Therefore, F = (mv-mu)/t where F is the resultant force , m is the mass of the object, v is the final velocity and u is the initial velocity.
Hence, Ft = mv-mu, but impulse is given by force multiplied by time, thus, impulse is equivalent to the change in momentum.
Impulse = Ft
= 325 × 2.2 sec
= 715 Ns
Answer:
The longer the length of string, the farther the pendulum falls; and therefore, the longer the period, or back and forth swing of the pendulum. The greater the amplitude, or angle, the farther the pendulum falls; and therefore, the longer the period.
Explanation:
The correct option is A.
In physics, inertia has to do with Newton's first law of motion which states that an object will continue in its state of rest or in motion unless it is acted upon by a force. Thus, inertia refers to the tendency of an object to continue its motion in a straight line at constant velocity. In the question given above, the car that its brake failed would have continue moving indefinitely if it did not crash into another car, that is, it will continue in its state of motion.
When a body performs a uniform circular motion, the direction of the velocity vector changes at every moment. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circle that gives rise to centripetal acceleration, the mathematical expression is given as,

Where,
v = Tangential Velocity
r = Radius
The linear velocity was 2010m/s in a radius of 0.159m, then the centripetal acceleration is


Therefore the centripetal acceleration of the end of the rod is 