Well, as the waves move it moves the rope as if its trying to take shape of it. Since the rope it light it will move along the ocean and the ocean will keep pushing up on the rope. (even without the waves the water is pushing the rope up so it can take its shape)
Maybe that'll help
some massive black dwarfs may eventually produce <u>supernova explosions. </u>These will occur if pycnonuclear (density-based) fusion processes much of the star to iron, which would lower the Chandrasekhar limit for some black dwarfs below their actual mass.
Answer:
t = 8 s
Explanation:
In order to find the time taken by the dragster we will use equations of motion. Here, we will use second equation of motion:
s = Vi t + (1/2)at²
where,
s = distance covered = 320 m
Vi = Initial Velocity = 0 m/s (Since, dragster starts from rest)
t = time taken = ?
a = acceleration of dragster = 10 m/s²
Therefore,
320 m = (0 m/s)t + (1/2)(10 m/s²)t²
t² = (320 m)(2)/(10 m/s²)
t = √(64 s²)
<u>t = 8 s</u>
Answer:
Explanation:
Concave lens also called as diverging lens i.e. it diverges ray of light coming towards it.
Concave lens is thicker at the edges and thinner at the center.
Concave lens formed the virtual image of the object i.e. it cannot be trace on screen. This lens is used to treat the nearsightedness or myopia in which a person is unable to see the far object clearly.