Kinetic energy is formed when the object is in motion.
Potential energy is the energy that is formed relative to others.
One of the example is Corn flour factory.
Corn turned into flour by a windmill that moved by the waterfall. Movement of the mill is relative to the power given by waterfall (potential energy) and the spinning crushes the corn into flour (kinetic energy)
Considering the definition of kinetic energy, the bullet has a kinetic energy of 156.25 J.
<h3>Kinetic energy</h3>
Kinetic energy is a form of energy. It is defined as the energy associated with bodies that are in motion and this energy depends on the mass and speed of the body.
Kinetic energy is defined as the amount of work necessary to accelerate a body of a given mass and in a rest position, until it reaches a given speed. Once this point is reached, the amount of accumulated kinetic energy will remain the same unless there is a change in speed or the body returns to its rest state by applying a force to it.
The kinetic energy is represented by the following expression:
Ec= ½ mv²
Where:
- Ec is the kinetic energy, which is measured in Joules (J).
- m is the mass measured in kilograms (kg).
- v is the speed measured in meters over seconds (m/s).
<h3>Kinetic energy of a bullet</h3>
In this case, you know:
Replacing in the definition of kinetic energy:
Ec= ½ ×0.500 kg× (25 m/s)²
Solving:
<u><em>Ec= 156.25 J</em></u>
Finally, the bullet has a kinetic energy of 156.25 J.
Learn more about kinetic energy:
brainly.com/question/25959744
brainly.com/question/14028892
#SPJ1
Answer:
never lol
studying is your work
but why all are doing I don't know=_=
Answer:
Explanation:
Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.
Speed = Distance/Time
As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.
Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.
So the speed of noise = Distance/Time = 2000/5.8=345 m/s.
Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.