Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy.
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
Answer:
The number of turns in the solenoid is 22366.
Explanation:
The number of turns in the solenoid can be found using the following equation:

Where:
B: is the magnetic field = 8.90 T
L: is the solenoid's length = 0.300 m
N: is the number of turns =?
I: is the current = 95 A
μ₀: is the magnetic constant = 4π×10⁻⁷ H/m
By solving equation (1) for N we have:

Therefore, the number of turns in the solenoid is 22366.
I hope it helps you!
Batesian mimicry is an adaptive feature associated with the coloration of a given species in a given environment.
<h3>What is Batesian mimicry?</h3>
Batesian mimicry can be defined as a type of adaptive feature associated with the coloration of a particular species and/or population.
On the first island, the color of the population won't change because of the absence of predators.
On the second island, the color of the population will change because of the presence of predators that can be alerted by the color.
On the third island, the color of the population won't change because of the presence of a species with a similar color.
In conclusion, Batesian mimicry is an adaptive feature associated with the coloration of a given species in a given environment.
Learn more about Batesian mimicry here:
brainly.com/question/14139071
#SPJ1
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
<u>Answer:</u>
The ball fall vertically 2.69 ft by the time it reached home plate 60.0 ft away.
<u>Explanation:</u>
Fastest recorded pitches major-league baseball, thrown by nolan ryan in 1974 = 100.8 mi/hr = 44.8 m/s
The horizontal distance to home plate = 60.0 ft = 18.288 m
We have the horizontal velocity = 44.8 m/s
So time taken = 18.288/44.8 = 0.408 seconds.
The distance traveled by baseball vertically is found out by equation 
Here u =0m/s, a = 9.81
and t = 0.408 s
Substituting

So vertical distance traveled = 0.82 m = 2.69 ft