Answer:
speeding up
Explanation:
because its speeding up, theres going to be more newtons in the back
i really hope this is right, tell me if so
Answer:

Explanation:
Using the conservation of energy we have:

Let's solve it for v:

So the speed at the lowest point is 
Now, using the conservation of momentum we have:

Therefore the speed of the block after the collision is 
I hope it helps you!
1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:

where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find

2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force

where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:

10 minutes are the same as 600 seconds.
If you run 2 meters in 1 second then you run 2 * 600 meters in 600 seconds.
Answer:
73.5 m/s
Explanation:
The position of the first ball is:
y = y₀ + v₀ t + ½ at²
y = h + (0)(18) + ½ (-9.8)(18)²
y = h − 1587.6
The position of the second ball is:
y = y₀ + v₀ t + ½ at²
y = h + (-v) (18−6) + ½ (-9.8)(18−6)²
y = h − 12v − 705.6
Setting the positions equal:
h − 1587.6 = h − 12v − 705.6
-1587.6 = -12v − 705.6
1587.6 = 12v + 705.6
882 = 12v
v = 73.5
The second ball is thrown downwards with a speed of 73.5 m/s