Answer:
The centripetal acceleration is 6.95 m/s²
Explanation:
Given;
angular displacement of the blade, θ = 90.08⁰
duration of motion of the blade, t = 0.4 s
radius of the circle moved by the blade, r = 0.45 m
The angular speed of the blade in radian is calculated as;

The centripetal acceleration is calculated as;
a = ω²r
a = (3.93)² x 0.45
a = 6.95 m/s²
Answer:
Explanation:
An object can store energy as the result of its position. For example, the heavy ball of a demolition machine is storing energy when it is held at an elevated position. This stored energy of position is referred to as potential energy. Similarly, a drawn bow is able to store energy as the result of its position. When assuming its usual position (i.e., when not drawn), there is no energy stored in the bow. Yet when its position is altered from its usual equilibrium position, the bow is able to store energy by virtue of its position. This stored energy of position is referred to as potential energy. Potential energy is the stored energy of position possessed by an object.
Answer: Because of the polarity of water molecules
Molecular <u>cohesion</u> is the attraction that molecules have for others of their same type. Depending on the intensity of this attraction, a substance is in a solid, liquid or gaseous state.
In this sense, water (
) can stick to itself through hydrogen bonds, because a water molecule consists of 2 hydrogen atoms attached to 1 oxygen atom.
The oxygen atom tends to monopolize more electrons and keeps them away from hydrogen. Then, it can be said that a water molecule will have a negative side (oxygen) and a positive side (hydrogen).
<u>Thanks to this polarity</u>, water molecules can stick together with the formation of<u> hydrogen bonds</u> to attract a partial positive charge of hydrogen and a more electronegative atom, such as oxygen.
Answer;
-Physical model
A physical representation of a real object, such as a globe of the world, is a physical model.
Explanation;
-A physical model is a simplified material representation, usually on a reduced scale, of an object or phenomenon that needs to investigated.
-The model can be used to simulate the physical conditions involved (temperature, waves, speed etc.) and to predict the particular constraints of the situation.
Answer:
Rise in level of fluid is 0.11 m
Rise in level of fluid in case of mercury is 0.728 cm or 7.28 mm
Solution:
As per the question:
Density of oil, 
Change in Pressure in the tank, 
Density of the mercury, 
Now,
To calculate the rise in the level of fluid inside the manometer:
We know that:
1 mmHg = 133.332 Pa
Thus

Also,

where
g = acceleration due to gravity
h = height of the fluid level

h = 0.11 m
Now, if mercury is used:


h = 0.00728 m = 7.28 mm