Answer:
A. Air
Explanation:
A thermal insulator is a material that does not let the heat trasmitting through it, or it transmits heat not very efficiently.
Generally, the lower the density of the material, the better insulator the material is: this is because in materials with very low density, particles are very spread apart, so they cannot collide with each other, and so the vibrations of the particles (which determine how hot a substance is) cannot be transmitted very efficiently.
In the options listed in this problem, air is the material with lowest density, therefore it is the best thermal insulator among them.
5.47 m
The bullet undergoes a non-elastic collision with the block of wood and momentum is conserved. The initial momentum is 0.029 kg * 510 m/s = 14.79 kg*m/s. The combined mass of the block and bullet is 1.40 kg * 0.029 kg = 1.429 kg. Since momentum is conserved, the velocity of both combined will then be 14.79 kg*m/s / 1.429 kg = 10.34989503 m/s.
With a local gravitational acceleration of 9.8 m/s^2, it will take 10.34989503 m/s / 9.8 m/s^2 = 1.056111738 s for their upward velocity to drop to 0, just prior to descending.
The equation for distance under constant acceleration is
d = 0.5 A T^2
so
d = 0.5 * 9.8 m/s^2 * (1.056111738 s)^2
d = 4.9 m/s^2 * 1.115372003 s^2
d = 5.465322814 m
Rounding to 3 significant figures gives a height of 5.47 meters.
We have the following equation for height:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
Where,
a: acceleration
vo: initial speed
h0: initial height.
The value of the acceleration is:
a = -g = -9.8 m / s ^ 2
For t = 0 we have:
h (0) = (1/2) * (a) * 0 ^ 2 + vo * 0 + h0
h (0) = h0
h0 = 0 (reference system equal to zero when the ball is hit).
For t = 5.8 we have:
h (5.8) = (1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0
(1/2) * (- 9.8) * (5.8) ^ 2 + vo * (5.8) + 0 = 0
vo = (1/2) * (9.8) * (5.8)
vo = 28.42
Substituting values we have:
h (t) = (1/2) * (a) * t ^ 2 + vo * t + h0
h (t) = (1/2) * (- 9.8) * t ^ 2 + 28.42 * t + 0
Rewriting:
h (t) = -4.9 * t ^ 2 + 28.42 * t
The maximum height occurs when:
h '(t) = -9.8 * t + 28.42
-9.8 * t + 28.42 = 0
t = 28.42 / 9.8
t = 2.9 seconds.
Answer:
The ball was at maximum elevation when:
t = 2.9 seconds.
Impulse is just the product of mass and speed!
I = 1700 * 22.5 = 38,250 kg m/s
It does not have any special name for its units :(
I Think Its True My Dude Or Dudette
.
Hope this helps
.
Zane