Answer:
4.62 M
Explanation:
Molarity = moles/volumes (L), so you need to find the moles and the volumes in liters.
Finding the volume is easy because you just have to convert mL to L, so the volume is 0.45 L
Next, find the moles. You can do this by using the molar mass of aluminum to convert the grams to moles. The molar mass of aluminum is 26.98 g/mol.
56 g * (1 mol/26.98 g) = 2.08 mol
Now, divide the moles (2.08) by the volume (.45 L)
Molarity = 4.62 M
Answer:
3 AU
Explanation:
The distance from the Earth to the Sun is known as 1 AU, or 1 Astronomical Unit. If an asteroid is three times this distance, it is 3 AU away.
<u>Answer:</u> The pressure that must be applied to the apparatus is 0.239 atm
<u>Explanation:</u>
To calculate the osmotic pressure, we use the equation for osmotic pressure, which is:

or,

where,
= osmotic pressure of the solution
i = Van't hoff factor = 1 (for non-electrolytes)
= mass of sucrose = 3.40 g
= molar mass of sucrose = 342.3 g/mol
= Volume of solution = 1 L
R = Gas constant = 
T = temperature of the solution = ![20^oC=[20+273]K=293K](https://tex.z-dn.net/?f=20%5EoC%3D%5B20%2B273%5DK%3D293K)
Putting values in above equation, we get:

Hence, the pressure that must be applied to the apparatus is 0.239 atm
Answer:
1.1
Explanation:
The slope of a line can be calculated using the values of the x and y corrdinates. The equation is given as;
M = ΔY / ΔX = Y2 - Y1 / X2 - X1
From the points;
(25.6cm³ , 28.16g) - (X1, Y1)
(17.3cm³, 19.03g) - (X2, Y2)
Inserting the values into the equation;
M = 19.03 - 28.16 / 17.3 - 25.6
M = -9.13 / -8.3 = 1.1