Answer:
1.8 × 10⁻⁴ mol M/s
Explanation:
Step 1: Write the balanced reaction
2 Br⁻ ⇒ Br₂
Step 2: Establish the appropriate molar ratio
The molar ratio of Br⁻ to Br₂ is 2:1.
Step 3: Calculate the rate of appearance of Br₂
The rate of disappearance of Br⁻ at some moment in time was determined to be 3.5 × 10⁻⁴ M/s. The rate of appearance of Br₂ is:
3.5 × 10⁻⁴ mol Br⁻/L.s × (1 mol Br₂/2 mol Br⁻) = 1.8 × 10⁻⁴ mol Br₂/L.s
As you get higher the atmospheric pressure lowers. The pressure in the packet of crisps has the pressure at which it has been closed (pressure at the surface of the earth). This means that the air molecules in the packet press harder outside than the air molecules in the atmosphere press on the packet.
Each type of
mineral has a chemical composition that is unique such as its chemical composition
and the arrangement of atoms. For example, the mineral hematite is Fe2O3. There
are two atoms of iron (Fe) and three atoms of oxygen (O).