The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
Answer:
293k
Explanation:
In this question, we are asked to calculate the temperature to which the reaction must be heated to double the equilibrium constant.
To find this value, we will need to use the Van’t Hoff equation.
Please check attachment for complete solution
<h2>
Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>
Explanation:
Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.
That is force 1 is 100 pound with x axis at 20°
F₁ = 100 cos 20 i + 100 sin 20 j
F₁ = 93.97 i + 34.20 j
That is force 2 is 150 pound with x axis at 60°
F₂ = 150 cos 60 i + 150 sin 60 j
F₂ = 75 i + 129.90 j
F₁ + F₂ = 93.97 i + 34.20 j + 75 i + 129.90 j
F₁ + F₂ = 168.97 i + 164.10 j

Resultant is 235.54 pounds at an angle 44.16° to X axis.
The applicable relationship is N1/N2 = V1/V2, meaning the ratio of primary voltage to secondary voltage is equal to the ratio of primary turns to secondary turns.
Here N1 = 1000, V1 = 250, V2 = 400V and N2 = TBD.
Rewriting the above relationship, N2 = N1 V2/V1 = 1000 x 400/250 = 1600 turns.
Answer: False
Explanation: The circulatory system of the body consists of the heart, blood vessels and blood. The deoxygenated blood from the body is carried to the heart.
Here, the deoxygentaed blood is converted into oxygenated by removing carbon dioxide from them and making it oxygenated.
The impure blood from the body is collected by the right ventricle and transported to the lungs for purification and then transported to the body.