Answer:
Explanation:
Before Thomson's discovery, atoms were believed according to the "Dalton's atomic theory" to be the smallest indivisible particle of any matter. This makes atoms the smallest unit of a matter.
Thomson in 1897, used the discharge tube to discover cathode rays which are today called electrons.
The discovery of electrons provided more light into the structure and nature of atoms. Atoms were now being seen in a different light as particles that are made up of other smaller sized particles.
Thomson through his experiment was able determine perfectly well the nature of the rays he saw emanating from the cathode. One of his findings shows that the rays are negatively charged and are repelled by negative charges.
The discovery of electrons further led to more works on the atom and other particles were discovered. Atoms were no longer seen as indivisible or the smallest particles of matter.
Answer:
correct answer is C
Explanation:
The photoelectric effect was correctly described by Einstein, where he assumes that the light ray is formed by photons that are articulated and behaves like an elastic shock, the energy of this particular is described by the Planck equation.
K = h f + Ф
where k is the kinetic energy of the electrons, f the frequency of the photons and Ф the work function of the material.
In this experiment, red light removes electrons, it is assumed that each photon spreads an electron if we have another light with more energy and 10% more intense, that is, with 10% more shapes and each arcane an electron the number of electrons removed of; material is increased by 10%.
The change in wavelength and consequently the frequency
c = λ f
f = c /λ
therefore, the wavelength of the voilet λ = 400 num has a higher frequency and therefore more energy, so that the turned-on turns have more kinetic energy.
With these approaches we examine the final answers where the correct answer is C
<span>The repelling of the support magnet decreases friction. is the answer you're looking for . :)
hope i helped - beanz</span>
Momentum describes an object in motion and is determined by the product of two variables: mass and velocity. Mass -- the weight of an object -- is usually measured in kilograms or grams for momentum problems. Velocity is the measure of distance traveled over time and is normally reported in meters per second. Examining the possible changes in these two variables identifies the different effects momentum can have on an object in motion.