Answer:
a) P =392.4[Pa]; b) F = 706.32[N]
Explanation:
With the input data of the problem we can calculate the area of the tank base
L = length = 10[m]
W = width = 18[cm] = 0.18[m]
A = W * L = 0.18*10
A = 1.8[m^2]
a)
Pressure can be calculated by knowing the density of the water and the height of the water column within the tank which is equal to h:
P = density * g *h
where:
density = 1000[kg/m^3]
g = gravity = 9.81[m/s^2]
h = heigth = 4[cm] = 0.04[m]
P = 1000*9.81*0.04
P = 392.4[Pa]
The force can be easily calculated knowing the relationship between pressure and force:
P = F/A
F = P*A
F = 392.4*1.8
F = 706.32[N]
Answer:
Explanation:
The Balmer series in a hydrogen atom relates the possible electron transitions down to the n = 2 position to the wavelength of the emission that scientists observe. In quantum physics, when electrons transition between different energy levels around the atom (described by the principal quantum number, n) they either release or absorb a photon. The Balmer series describes the transitions from higher energy levels to the second energy level and the wavelengths of the emitted photons. You can calculate this using the Rydberg formula.
F=ma
As velocity is constant, a=0
So, F=0
Hope this helps!
Answer:
You will discover that at high altitude, there is cold and the opposite is experienced when you go deep down the sea. However, the reason elevation affects climate and temperature gets colder is this. As you go higher up, the atmosphere experiences less pressure.
Explanation:
Answer:
1328.7032 kg
Explanation:
P = Pressure = 112 kPa
T = Temperature = 285 K
V = Volume = 7023 m³
R = Gas constant = 8.314 J/mol K
From the ideal gas law we have

The mass of gas is given by

The mass of helium in the blimp is 1328.7032 kg