The main formula is as follow is explained in the attached file (please look at the examples)
the 1,3- butadiene is h2c=ch-ch=ch2, so we have
sp² sp² sp² sp²
h2c = ch - ch = ch2
<span>the hybridization of the carbon atoms is </span>sp² : trigonal planar
(1) a beta particle is your answer. Na-24 decays through beta decay, turning a neutron into a proton, electron (beta particle), and an neutrino.
Answer:
A. ΔG° = 132.5 kJ
B. ΔG° = 13.69 kJ
C. ΔG° = -58.59 kJ
Explanation:
Let's consider the following reaction.
CaCO₃(s) → CaO(s) + CO₂(g)
We can calculate the standard enthalpy of the reaction (ΔH°) using the following expression.
ΔH° = ∑np . ΔH°f(p) - ∑nr . ΔH°f(r)
where,
n: moles
ΔH°f: standard enthalpy of formation
ΔH° = 1 mol × ΔH°f(CaO(s)) + 1 mol × ΔH°f(CO₂(g)) - 1 mol × ΔH°f(CaCO₃(s))
ΔH° = 1 mol × (-635.1 kJ/mol) + 1 mol × (-393.5 kJ/mol) - 1 mol × (-1206.9 kJ/mol)
ΔH° = 178.3 kJ
We can calculate the standard entropy of the reaction (ΔS°) using the following expression.
ΔS° = ∑np . S°p - ∑nr . S°r
where,
S: standard entropy
ΔS° = 1 mol × S°(CaO(s)) + 1 mol × S°(CO₂(g)) - 1 mol × S°(CaCO₃(s))
ΔS° = 1 mol × (39.75 J/K.mol) + 1 mol × (213.74 J/K.mol) - 1 mol × (92.9 J/K.mol)
ΔS° = 160.6 J/K. = 0.1606 kJ/K.
We can calculate the standard Gibbs free energy of the reaction (ΔG°) using the following expression.
ΔG° = ΔH° - T.ΔS°
where,
T: absolute temperature
<h3>A. 285 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 285K × 0.1606 kJ/K = 132.5 kJ
<h3>B. 1025 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1025K × 0.1606 kJ/K = 13.69 kJ
<h3>C. 1475 K</h3>
ΔG° = ΔH° - T.ΔS°
ΔG° = 178.3 kJ - 1475K × 0.1606 kJ/K = -58.59 kJ
Medium about 3 second? Not sure lol just need more points honestly lol
Answer:
1.034 L
Explanation:
P1 V1 = P2 V2
P1 V1 / P2 = V2
2.4 (2.5) / 5.8 = V2 = 1.034 L