Energy released by fusion in the sun is initially in the form of gamma rays.
Gamma rays arise from the radioactive decay of nuclei. They are penetrating electromagnetic radiations consisting of very high energy photons.
Gamma rays are ionizing radiations and have very serious biological dangers and hazards (due to their ability of ionizing the atoms).
Answer:
<u>B</u>
Explanation:
Planets have different year lengths because it depends how far they revolve from a celestial body. Each planet has its own orbital period. Planets closer to the star will have a lower orbital period compared to the ones that lie far away from it.
Answer:
The strength of the magnetic field is 3.5 x 10⁻³ T
Explanation:
Given;
magnitude of the magnetic flux , Φ = 5.90 x 10⁻⁵ T·m²
angle of inclination of the field, θ = 42.0°
radius of the circular plate, r = 8.50 cm = 0.085 m
Generally magnetic flux in a uniform magnetic field is given as;
Φ = BACosθ
where;
B is the strength of the magnetic field
A is the area of the circular plate
Area of the circular plate:
A = πr²
A = π (0.085)² = 0.0227 m²
The strength of the magnetic field:
B = Φ / ACosθ
B = ( 5.90 x 10⁻⁵) / ( 0.0227 x Cos42)
B = 3.5 x 10⁻³ T
Therefore, the strength of the magnetic field is 3.5 x 10⁻³ T
Answer:
Micro and radio waves.
Lower energy.
Gamma rays.
Explanation:
The electromagnetic spectrum is the range of frequencies of electromagnetic radiation and their respective wavelengths.
Ionising radiation os defined as the energy required of photons of a wave to ionize atoms, causing chemical reactions.
The energy of the wave depends on both the amplitude and the frequency. If the energy of each wavelength is a discrete packet of energy, a high-frequency wave will deliver more of these packets per unit time than a low-frequency wave. In summary, the longer the wavelength, the lower the energy to ionise.
The velocity of a wave is directly proportional to the frequency of that wave.
c = f * lambda
Where,
c = velocity of the wave
f = frequency of the wave = 1/time
Lambda = wavelength.
From the above expression, the longer the wavelength, lambda the shorter the frequency.
Examples of waves with longer wavelengths are, micro and radio waves, while radiations with shorter wavelengths like gamma rays.
I believe the answer to your question is A. 340 meters/second hope i helped