Answer:
Distance= 2.3864m
Explanation:
So that the balance is in equilibrium parallel to the floor, we must match the moment each man makes with respect to the pivot point.
In many cases the point of application of force does not coincide with the point of application in the body. In this case the force acts on the object and its structure at a certain distance, by means of an element that transfers that action of this force to the object.
This combination of force applied by the distance to the point of the structure where it is applied is called the moment of force F with respect to the point. The moment will attempt a rotation shift or rotation of the object. The distance from the force to the point of application is called the arm.
Mathematically it is calculated by expression:
M= F×d
The moment caused by the first man is:
M1= 75kg × (9.81m/s²) × 1.75m= 1287.5625 N×m
The moment caused by the second man must be equal to that caused by the first by which:
M2= 1287.5625 N×m= 55kg × (9.81m/s²) × distance ⇒
⇒distance= (1287.5625 N×m)/( (55kg × (9.81m/s²) )= 2.3864m
At this distance from the pivot point, the second should sit down so that the balance is balanced parallel to the ground.
The x-acis of a trajectory represents its C
<span>antimony. It has +3,+5,-3 so yeah. the others carbon+2,+4,-4, chlorine +1,+5,+7,-1 but -1 is the most often so it isn't Cl, calcium +2.</span>
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:
