The most appropriate unit for describing a 26 mile marathon run would be C. Kilometre. As kilometres can be easily utilized and converted to miles and vice-versa.
Answer:
Like a prokaryotic cell, a eukaryotic cell has a plasma membrane, cytoplasm, and ribosomes, but a eukaryotic cell is typically larger than a prokaryotic cell, has a true nucleus (meaning its DNA is surrounded by a membrane), and has other membrane-bound organelles that allow for compartmentalization of functions.
Answer:
C is surely the answer
C. Disrupting intermediate filaments will result in cells that are more susceptible to mechanical forces. In the case of the keratinocytes, disrupting keratin, a key IF in these cells, would result in very fragile cells. Less force would need to be applied using the magnetic beads to damage them or change their shape.
They are located in the liver the wall of the sinusoids.
Answer:
- In glycolysis, glucose is split into two pyruvate and makes some ATP
- The Krebs cycle produces ATP, NADH and CO2
- NADH gives electrons to the ETC
- As electrons move down the ETC, a H+ gradient is made
- H+ pass through the ATP synthase to make ATP
Explanation:
This question is describing the processes involved in cellular respiration. Cellular respiration is the way through which living cells synthesize energy (ATP) by breaking down sugar. Cellular respiration involves three major steps: glycolysis, Krebs cycle, and oxidative phosphorylation (electron transport chain).
- Glycolysis is the process whereby glucose is broken down into pyruvic acid or pyruvate with the synthesis of net 2 ATP molecules.
- Kreb's cycle produces ATP, NADH and CO2.
- NADH is an electron carrier that donates electrons to the Electron transport chain (ETC).
- Electrons move down the ETC to produce a proton (H+) gradient
- The proton (H+) passes through an enzyme called ATP synthase to make ATP from ADP molecule.