1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
3 years ago
9

A steel ball rolls with a constant velocity on a tabletop 0.950 m high it rolls off and hit the ground 0.352 m from the edge of

the table. How fast was the ball rolling ?
Physics
1 answer:
sp2606 [1]3 years ago
3 0

Answer:

0.799 m/s if air resistance is negligible.

Explanation:

For how long is the ball in the air?

Acceleration is constant. The change in the ball's height \Delta h depends on the square of the time:

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t,

where

  • \Delta h is the change in the ball's height.
  • g is the acceleration due to gravity.
  • t is the time for which the ball is in the air.
  • v_0 is the initial vertical velocity of the ball.
  • The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground. \Delta h = -0.950\;\text{m}.
  • Gravity pulls objects toward the earth, so g is also negative. g \approx -9.81\;\text{m}\cdot\text{s}^{-2} near the surface of the earth.
  • Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result, v_0 = 0.

Solve for t.

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t;

\displaystyle -0.950 = \frac{1}{2} \times (-9.81) \cdot t^{2};

\displaystyle t^{2} =\frac{-0.950}{1/2 \times (-9.81)};

t \approx 0.440315\;\text{s}.

What's the initial horizontal velocity of the ball?

  • Horizontal displacement of the ball: \Delta x = 0.352\;\text{m};
  • Time taken: \Delta t = 0.440315\;\text{s}

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.

\begin{aligned}\text{Rolling Velocity}&=\text{Horizontal Velocity} \\&= \text{Average Horizontal Velocity}\\ &=\frac{\Delta x}{\Delta t}=\frac{0.352\;\text{m}}{0.440315\;\text{s}}=0.0799\;\text{m}\cdot\text{s}^{-1}\end{aligned}.

Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.

You might be interested in
A loudspeaker diaphragm is vibrating in simple harmonic motion with a frequency of 760 Hz and a maximum displacement of 0.85 mm.
Alchen [17]

Answer:(a) 4775.2Hz (b) 4.06m/s (c) 19382.15m/s²

Explanation: Given that the frequency of oscilation f, is 760Hz and the maximum displacement x, is 0.85mm= 0.00085m

(a) Angular frequency w= 2πf

w= 2π × 760 = 4775.2Hz

(b) Maximum speed v is given as the product of angular frequency and maximum displacement

V=wx

V= 4775.2 × 0.00085

V= 4.06m/s

(c) The maximum acceleration a

= w²x

= (4775.2)² × (0.00085)

a= 19382.15m/s².

5 0
3 years ago
What is Motion ????? ​
Mama L [17]

Answer:

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

5 0
3 years ago
Read 2 more answers
You are removing branches from your roof after a big storm. You throw a branch horizontally from your roof, which is a height 3.
mart [117]

Answer:

The initial velocity in the x-direction with which the branch was thrown is approximately 10.224 m/s

Explanation:

The given parameters of the motion of the branch are;

The height from which the branch is thrown = 3.00 m

The horizontal distance the branch lands from where it was thrown, x = 8.00 m

The direction in which the branch is thrown = Horizontally

Therefore, the initial vertical velocity of the branch, u_y = 0 m/s

The time it takes an object in free fall (zero initial downward vertical velocity) to reach the ground is given as follows;

s = u_y·t + 1/2·g·t²

Where;

u_y = 0 m/s

s = The initial height of the object = 3.00 m

g = The acceleration due to gravity = 9.8 m/s²

∴ s = 0·t + 1/2·g·t² = 0 × t + 1/2·g·t² = 1/2·g·t²

t = √(2·s/g) = √(2 × 3/9.8) = (√30)/7 ≈ 0.78246

The horizontal distance covered before the branch touches the ground, x = 8.00 m

Therefore, the initial velocity in the horizontal, x-direction with which the branch was thrown, 'uₓ', is given as follows;

uₓ = x/t = 8.00 m/((√30)/7 s)

Using a graphing calculator, we get;

uₓ = 8.00 m/((√30)/7 s) = (28/15)·√30 m/s ≈ 10.224 m/s

The initial velocity in the horizontal, x-direction with which the branch was thrown, uₓ ≈ 10.224 m/s.

3 0
3 years ago
If the charge on the negative plate of the capacitor is 121 nano-Coulomb, how many excess electrons are on that plate? Write you
Julli [10]

Answer:

n = 756.25 giga electrons

Explanation:

It is given that,

If the charge on the negative plate of the capacitor, Q=121\ nC=121\times 10^{-9}\ C

Let n is the number of excess electrons are on that plate. Using the quantization of charges, the total charge on the negative plate is given by :

Q=ne

e is the charge on electron

n=\dfrac{Q}{e}

n=\dfrac{121\times 10^{-9}}{1.6\times 10^{-19}}

n=7.5625\times 10^{11}

or

n = 756.25 giga electrons

So, there are 756.25 giga electrons are on the plate. Hence, this is the required solution.

6 0
3 years ago
The best description of personality traits we have today is
Anettt [7]
Openness to experience, Neuroticism, agreeableness, Extroversion, Conscientiousness
3 0
2 years ago
Other questions:
  • Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum th
    14·1 answer
  • What happens when an object with a higher density is placed in a container with a lower density liquid?
    11·1 answer
  • 60 point!!!
    14·1 answer
  • A 10.-newton force is required to hold a stretched spring 0.20 meter from its rest position. What is the potential energy stored
    11·1 answer
  • If a certain mass of mercury has a volume of 0.002 m3 at a temperature of 20°C, what will be the volume at 50°C?
    11·2 answers
  • Which of the following statements is TRUE for high-visibility clothing? A. High-visibility clothing helps to reduce insect probl
    11·2 answers
  • As the building collapses, the volume of air inside the building decreases, while the mass of the air stays the same. This means
    7·1 answer
  • How does static electricity apply to car<br> paint application?
    8·1 answer
  • You have an electric field with an intensity of 18 N/C at a
    11·1 answer
  • Whoever get this right gets free cookies. best deal. ( BASIC PHYSICS QUESTION )
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!