1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ValentinkaMS [17]
3 years ago
9

A steel ball rolls with a constant velocity on a tabletop 0.950 m high it rolls off and hit the ground 0.352 m from the edge of

the table. How fast was the ball rolling ?
Physics
1 answer:
sp2606 [1]3 years ago
3 0

Answer:

0.799 m/s if air resistance is negligible.

Explanation:

For how long is the ball in the air?

Acceleration is constant. The change in the ball's height \Delta h depends on the square of the time:

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t,

where

  • \Delta h is the change in the ball's height.
  • g is the acceleration due to gravity.
  • t is the time for which the ball is in the air.
  • v_0 is the initial vertical velocity of the ball.
  • The height of the ball decreases, so this value should be the opposite of the height of the table relative to the ground. \Delta h = -0.950\;\text{m}.
  • Gravity pulls objects toward the earth, so g is also negative. g \approx -9.81\;\text{m}\cdot\text{s}^{-2} near the surface of the earth.
  • Assume that the table is flat. The vertical velocity of the ball will be zero until it falls off the edge. As a result, v_0 = 0.

Solve for t.

\displaystyle \Delta h = \frac{1}{2} \;g\cdot t^{2} + v_0\cdot t;

\displaystyle -0.950 = \frac{1}{2} \times (-9.81) \cdot t^{2};

\displaystyle t^{2} =\frac{-0.950}{1/2 \times (-9.81)};

t \approx 0.440315\;\text{s}.

What's the initial horizontal velocity of the ball?

  • Horizontal displacement of the ball: \Delta x = 0.352\;\text{m};
  • Time taken: \Delta t = 0.440315\;\text{s}

Assume that air resistance is negligible. Only gravity is acting on the ball when it falls from the tabletop. The horizontal velocity of the ball will not change while the ball is in the air. In other words, the ball will move away from the table at the same speed at which it rolls towards the edge.

\begin{aligned}\text{Rolling Velocity}&=\text{Horizontal Velocity} \\&= \text{Average Horizontal Velocity}\\ &=\frac{\Delta x}{\Delta t}=\frac{0.352\;\text{m}}{0.440315\;\text{s}}=0.0799\;\text{m}\cdot\text{s}^{-1}\end{aligned}.

Both values from the question come with 3 significant figures. Keep more significant figures than that during the calculation and round the final result to the same number of significant figures.

You might be interested in
Julie drives 100 mi to Grandmother's house. On the way to Grandmother's, Julie drives half the distance at 30.0 mph and half the
salantis [7]

Answer:

Explanation:

Given

Distance to grandmother's house=100 mi

it is given that during return trip Julie spend equal time driving with speed 30 mph and 70 mph

Let Julie travel x mi with 30 mph and 100-x with 70 mph

\frac{x}{30}=\frac{100-x}{70}

x=30 mi

Therefore

Julie's Average speed on the way to Grandmother's house=\frac{100}{\frac{50}{30}+\frac{50}{70}}

=42 mph

On return trip

=\frac{100}{2\frac{30}{30}}=50 mph

6 0
4 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
3 years ago
A horizontal 2.00\ m2.00 m long, 5.00\ kg5.00 kg uniform beam that lies along the east-west direction is acted on by two forces.
Sunny_sXe [5.5K]

Answer: 240\ rad/s^2

Explanation:

Given

Length of beam l=2\ m

mass of beam m=5\ kg

Two forces of equal intensity acted in the opposite direction, therefore, they create a torque of magnitude

\tau =F\times l=200\times 2=400\ N.m

Also, the beam starts rotating about its center

So, the moment of inertia of the beam is

I=\dfrac{ml^2}{12}=\dfrac{5\times 2^2}{12}\\\\I=\dfrac{5}{3}\ kg.m^2

Torque is the product of moment of inertia and angular acceleration

\Rightarrow \tau=I\alpha\\\\\Rightarrow 400=\dfrac{5}{3}\times \alpha\\\\\Rightarrow \alpha =240\ rad/s^2

7 0
3 years ago
A mass of gas under constant pressure occupies a volume of 0.5 m3 at a temperature of 20°C. Using the formula for cubic expansio
Kryger [21]
No cubic expansion given
6 0
3 years ago
Katrina is a teen from Australia who participates in curling, a sport in which players slide stones across the ice toward a targ
goldenfox [79]
Personally i would say advertising but I can also see where it could be globalization because the Olympics is about different countries coming together and having friendly competition. 
6 0
3 years ago
Read 2 more answers
Other questions:
  • Which claim would most likely be considered valid?
    7·2 answers
  • PLSSS HELP 10 MORE MINS LEFT UNTIL THIS IS DUE The diagram shows you the direction heat energy is moving. Based on the diagram,
    5·1 answer
  • PLEASE HELP! TRUE OR FALSE!
    12·2 answers
  • When the charges in the rod are in equilibrium, what is the magnitude of the electric field within the rod?
    15·1 answer
  • A car skids 18 m on a level road while trying to stop before hitting a stopped car in front of it. The two cars barely touch. Th
    6·1 answer
  • carmen and harry pack 12 cans of food into a box. five of the cans contain vegetables. seven of the cans contain soup. if harry
    7·1 answer
  • What is the momentum of a 10kg ball moving at a velocity of 4m/s east?​
    13·1 answer
  • Consider this statement: Air is matter. Which facts best support the statement?
    9·2 answers
  • I need help!!!!!!!!!!!pleaseeeeeee
    6·1 answer
  • Choice are 1.3 1.0 17​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!