A galaxy is a system of millions to billions of stars, and is held together by gravitational attraction. There are around 2 trillion galaxies.
The correct statements are "Each orbit holds a fixed number of electrons" and "The n=1 orbit can only hold two electrons." According to the Bohr model, the maximum number of electrons that can occupy an orbit is given by
, where n is the number of the orbit. For instance, when n=1 it means
. This particular orbit can only hold up to two electrons. Even though the electrons can gain energy and move to higher orbits or electrons from higher orbits can lose energy and drop to the n=1 level, the energy level would not allow more electrons to enter the orbit once it is full. Again the octet rule, which states that atoms achieve stability by having 8 valence electrons, limits the maximum number of electrons that can be occupied by an orbit. The gain and loss of electrons is done to achieve the noble gas configuration and once that is reached no more electron can be added to an orbit
This looks complicated, but it's actually not too tough.
The formula for the gravitational force between two objects is
Force = G (one mass) (other mass) / (distance²) .
The question GAVE us all of those numbers except the distance.
All we have to do is pluggum in, massage it around, and find
the distance.
Force = 4.18 x 10¹⁵ N
G = 6.673 x 10⁻¹¹ N·m²/kg²
One mass = 6.58 x 10²³ kg
Other mass = 9.3 x 10¹⁵ kg .
The only tricky thing about this is gonna be the arithmetic ...
keeping all the exponents straight.
Take the formula for the gravitational force and plug in
everything we know:
Force = (G) · (one mass) · (other mass) / (distance²)
4.18x10¹⁵N = (6.673x10⁻¹¹N-m²/kg²)·(6.58x10²³kg)·(9.3x10¹⁵kg) / (distance²).
Multiply each side by (distance²):
(distance²)·(4.18x10¹⁵N) = (6.673x10⁻¹¹N-m²/kg²)·(6.58x10²³kg)·(9.3x10¹⁵kg)
Divide each side by (4.18 x 10¹⁵ N) :
(distance²)=(6.673x10⁻¹¹N-m²/kg²)·(6.58x10²³kg)·(9.3x10¹⁵kg) / (4.18x10¹⁵N)
That's the end of the Physics and Algebra. The only thing left is Arithmetic.
We have to simplify that whole ugly thing on the right side of the equation,
and then take the square root of each side.
When I crunch down the right side of that equation, I get
(distance²) = 9.769 x 10¹³ m²
and when I take the square root of each side, I get
distance = 9.884 x 10⁶ meters . **
You should check my Arithmetic. **
(Pause occasionally to let your calculator cool off.)
BY THE WAY ...
That "distance" in the equation for gravitational force is the distance
between the CENTERS of the two objects.
This doesn't make much difference for Phobos, because Phobos isn't
much bigger than a big sweet potato. But it does make a difference for
Mars.
The 'distance' we find with all of this nonsense is NOT the distance
between Phobos and the surface of Mars. It's the distance between
Phobos and the CENTER of Mars, so it includes the planet's radius.
** Consulting online resources between Floogle and Flickerpedia,
I found that the orbital distance of Phobos from Mars varies between
9,234 km and 9,517 km. Add the planet's radius to these, and I'm
beginning to feel confidence in the results of my back-of-the-napkin
calculation. But you should still check my Arithmetic.
Answer:
244mm
Explanation:
I₁ = 3.35A
I₂ = 6.99A
μ₀ = 4π*10^-7
force per unit length (F/L) = 6.03*10⁻⁵N/m
B = (μ₀ I₁ I₂ )/ 2πr .........equation i
B = F / L ..........equation ii
equating equation i & ii,
F / L = (μ₀ I₁ I₂ )/ 2πr
Note F/L = B = F
F = (μ₀ I₁ I₂ ) / 2πr
2πr*F = (μ₀ I₁ I₂ )
r = (μ₀ I₁ I₂ ) / 2πF
r = (4π*10⁻⁷ * 3.35 * 6.99) / 2π * 6.03*10⁻⁵
r = 1.4713*10⁻⁵ / 6.03*10⁻⁵
r = 0.244m = 244mm
The distance between the wires is 244m
Answer:
C:
Explanation:
either C or A but A seems unlikely after multiple attempts. Although the question doesn't make it clear whether the balance is electric either way it could be wrong in someway and seems to be the most likely.