Hello!
Because as you get closer to the surface of the earth, the more air that is on top of you. At the top of the atmosphere, there is less air, and everything is a vacuum, where you have no weight. When you get close to the earth, the weight of the air builds until it when you're at the very lowest point of the earths surface, all the air in the atmosphere above you is pressing down.
Thank You!
Answer:
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Explanation:
The distance travelled on the rough ice is equal to the width of the rough ice.
distance d = 5.0 m
Initial speed u = 9.2 m/s
Final speed v = 5.8 m/s
The time taken to move through the rough ice can be calculated using the equation of motion;
d = 0.5(u+v)t
time t = 2d/(u+v)
Substituting the given values;
t = 2(5)/(9.2+5.8)
t = 2/3 = 0.66667 second
The acceleration is the change in velocity per unit time;
acceleration a = ∆v/t
a = (v-u)/t
Substituting the values;
a = (5.8-9.2)/0.66667
a = -5.099974500127
a = -5.10 m/s^2
her acceleration on the rough ice is -5.10 m/s^2
Just remember
Voltage = current times resistance
current = voltage over resistance
Current = 9/3 = 3
Answer:
6 V
Explanation:
We can solve the problem by using Ohm's law:

where
V is the voltage in the circuit
R is the resistance
I is the current
In this problem, we know the current,
, and the resistance,
, therefore we can find the voltage in the circuit:

Answer: 31.6ft
Explanation:
Check the attachment for the diagram.
According to the right angle triangle AEC, we will use Pythagoras theorem to get |AC|. Note that |AE| = |AB| - |CD|
that is 20ft - 10ft = 10ft
According to the theorem, the square of the sum of the adjacent side and the opposite side is equal to the square of the hypotenuse.
|AE|^2 + |EC|^2 = |AC|^2
10^2 + 30^2 = |AC|^2
100 + 900 = |AC|^2
|AC| = √1000
|AC| = 31.6ft
Therefore, the wire should be anchored 31.6ft to the ground to minimize the amount of wire needed.