Answer: Construction management, Architecture, Civil Drafting.
Explanation: hope this helps :)
Answer:
KE + PE = KE + PE
Explanation:
In a closed system, the mechanical energy of the system is constant.
Mechanical energy is given by the sum of kinetic energy and potential energy; mathematically:
U = KE + PE
where
KE is the kinetic energy
PE is the potential energy
This means that if we consider two situations, one at the beginning and one at the end, the value of U will not change if the system is closed; this means that the sum KE + PE will remain the same, so we can write:
KE + PE = KE + PE
Explanation:
The given data is as follows.
Angular velocity (
) = 2.23 rps
Distance from the center (R) = 0.379 m
First, we will convert revolutions per second into radian per second as follows.
= 2.23 revolutions per second
=
= 14.01 rad/s
Now, tangential speed will be calculated as follows.
Tangential speed, v =
= 0.379 x 14.01
= 5.31 m/s
Thus, we can conclude that the tack's tangential speed is 5.31 m/s.
Answer:
this is the answer according to my calculations
Explanation:
0.001.9
Answer:
a) Acceleration of the car is given as

b) Acceleration of the truck is given as

Explanation:
As we know that there is no external force in the direction of motion of truck and car
So here we can say that the momentum of the system before and after collision must be conserved
So here we will have

now we have


a) For acceleration of car we know that it is rate of change in velocity of car
so we have



b) For acceleration of truck we will find the rate of change in velocity of the truck
so we have


