Answer:

Explanation:
For answer this we will use the law of the conservation of the angular momentum.

so:

where
is the moment of inertia of the merry-go-round,
is the initial angular velocity of the merry-go-round,
is the moment of inertia of the merry-go-round and the child together and
is the final angular velocity.
First, we will find the moment of inertia of the merry-go-round using:
I = 
I = 
I = 359.375 kg*m^2
Where
is the mass and R is the radio of the merry-go-round
Second, we will change the initial angular velocity to rad/s as:
W = 0.520*2
rad/s
W = 3.2672 rad/s
Third, we will find the moment of inertia of both after the collision:



Finally we replace all the data:

Solving for
:

There is more wire to travel through,farther distance, and a higher possibility of other disruptions. Please Mark Brainliest!!!
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!