Gestalt psychology is a a theory of mind of the Berlin School of experimental psychology. It tries to understand the laws of our ability to acquire and maintain meaningful perceptions in an apparently chaotic world. It proposes that the whole of an object or scene is more important than its individual parts.
Answer:
3.66m/s^2
Explanation:
First, we need to find the friction which is F=u*N.
After that, find the resultant force by substarcting the friction from the forward force.
Lastly,using the formula F=ma, substitute in the known values of F and m to find a
Let u = the speed of the car at the instant when braking begins.
The braking distance is s = 62.3 m, the acceleration is a = -5.9 m/s², and the braking duration is t = 4.15 s.
Use the formula s = ut + (1/2)at² to obtain
(u m/s)*(4.15 s) + 0.5*(-5.9 m/s²)*(4.5 s)² = (62.3 m)
4.15u = 62.3 + 50.8064 = 113.1064
u = 27.2546 m/s
Let v m/s be the speed with which the car strikes the tree.
Then
v = 27.2546 - 5.9*4.15
= 2.7696 m/s
Answer: 2.77 m/s (nearest hundredth)
Answer:
(A) The speed just as it left the ground is 30.25 m/s
(B) The maximum height of the rock is 46.69 m
Explanation:
Given;
weight of rock, w = mg = 20 N
speed of the rock at 14.8 m, u = 25 m/s
(a) Apply work energy theorem to find its speed just as it left the ground
work = Δ kinetic energy
F x d = ¹/₂mv² - ¹/₂mu²
mg x d = ¹/₂m(v² - u²)
g x d = ¹/₂(v² - u²)
gd = ¹/₂(v² - u²)
2gd = v² - u²
v² = 2gd + u²
v² = 2(9.8)(14.8) + (25)²
v² = 915.05
v = √915.05
v = 30.25 m/s
B) Use the work-energy theorem to find its maximum height
the initial velocity of the rock = 30.25 m/s
at maximum height, the final velocity = 0
- mg x H = ¹/₂mv² - ¹/₂mu²
- mg x H = ¹/₂m(0) - ¹/₂mu²
- mg x H = - ¹/₂mu²
2g x H = u²
H = u² / 2g
H = (30.25)² / 2(9.8)
H = 46.69 m