The total mechanical energy of the system at any time t is the sum of the kinetic energy of motion of the ball and the elastic potential energy stored in the spring:

where m is the mass of the ball, v its speed, k the spring constant and x the displacement of the spring with respect its rest position.
Since it is a harmonic motion, kinetic energy is continuously converted into elastic potential energy and vice-versa.
When the spring is at its maximum displacement, the elastic potential energy is maximum (because the displacement x is maximum) while the kinetic energy is zero (because the velocity of the ball is zero), so in this situation we have:

Instead, when the spring crosses its rest position, the elastic potential energy is zero (because x=0) and therefore the kinetic energy is at maximum (and so, the ball is at its maximum speed):

Since the total energy E is always conserved, the maximum elastic potential energy should be equal to the maximum kinetic energy, and so we can find the value of the maximum speed of the ball:


Answer:
density d = 1.59 g/cm^3
The density of the rock is 1.59 g/cm^3
Explanation:
The density of an object can be derived by measuring its mass and then measuring its volume by submerging it in a graduated cylinder.
Density = mass/volume of water displaced
d = m/v ........1
Given;
mass m = 344 g
Volume of water displaced v = 216 cm^3
from equation 1, we can calculate the value of the density;
Substituting the given values;
d = 344/216 g/cm^3
d = 1.592592592592 g/cm^3
d = 1.59 g/cm^3
The density of the rock is 1.59 g/cm^3
Answer:
Hey baby, I love you. Yes i do play metal gear with snake
Explanation:
Objects that conduct electricity poorly are called non-metals.
Answer:
The dilation of time.
The falling of objects.
The changing of paths of light.
Explanation:
I have explained in the image attached below.
From the explanation, the correct ones are;
The dilation of time.
The falling of objects.
The changing of paths of light.