Answer:
the density of the wooden cube is 204.1 kg/m³
Explanation:
Given;
applied force, F = 54 N
length of each side of the solid wooden cube, L = 30 cm = 0.3 m
mass of the wooden cube is calculated as;
F = mg
m = F/g
m = 54/9.8
m = 5.51 kg
The volume of the wooden cube is calculated as;
V = L³
V = (0.3)³
V = 0.027 m³
The density of the wooden cube is calculated as;
ρ = m/V
ρ = (5.51 kg) / (0.027 m³)
ρ = 204.1 kg/m³
Therefore, the density of the wooden cube is 204.1 kg/m³
Answer:
answer D. all of the above
Answer:
1. Number of dry cells of 1.5 V required is 40.
2. Number of internal resistance of 1 ohm required is 807
Explanation:
We'll begin by calculating the resistance. This can be obtained as follow:
Power (P) = 60 W
Voltage (V) = 220 V
Resistance (R) =?
P = V²/R
60 = 220² / R
Cross multiply
60 × R = 220²
60 × R = 48400
Divide both side by 60
R = 48400 / 60
R ≈ 807 Ohm
1. Determination of the number of dry cells of 1.5 V required.
Voltage (V) = 220
Dry Cells = 1.5 V
Number of dry cells (n) =?
n = Voltage / Dry cells
n = 60 / 1.5
n = 40
2. Determination of the number of internal resistance of 1 ohm required.
Resistance (R) = 807 Ohm
Internal resistance (r) = 1 ohm
Number of internal resistance (n) =?
n = R/r
n = 807 / 1
n = 807
SUMMARY:
1. Number of dry cells of 1.5 V required is 40.
2. Number of internal resistance of 1 ohm required is 807
Answer:
Lower energy shell which will be nearer to the nucleus.
Explanation:
When electron move from one energy level to another, an electron must gain or lose just the right amount of energy.
When atoms releases energy, electrons move into lower energy levels. The electrons in the shells aways from the nucleus have more energy as compared to the electrons in the nearer shells.
Electrons with the lowest energy are found closest to the nucleus, where the attractive force of the positively charged nucleus is the greatest. Electrons that have higher energy are found further away
Answer:
A.Gravity acts to pull the object down
D.The object’s inertia carries it forward.
E.The path of the object is curved.
Explanation:
The motion of a projectile consists of two independent motions:
- A uniform motion along the horizontal direction, with constant horizontal speed
- A vertical motion with constant acceleration of g = 9.8 m/s^2 downward (acceleration due to gravity), due to the presence of the force of gravity, so the vertical velocity changes (increases in the downward direction)
As a result, the combined motion of the projectile has a curved trajectory (parabolic, more specifically). So the following options are correct:
A.Gravity acts to pull the object down --> gravity acts along the vertical direction
D.The object’s inertia carries it forward. --> there are no forces acting along the horizontal direction (if we neglect air resistance), so the horizontal motion continues with constant speed
E.The path of the object is curved