Answer:
See the explanation below
Explanation:
Density is defined as the relationship between mass and volume, i.e. the following equation can be used:
density = m/v
where:
density [kg/m^3]
m = mass [kg]
v = volume [m^3]
If we change the volume of a body by reducing its size, its mass will also decrease proportionally with a density as seen in the equation.
m = density*v
To understand this concept more clearly, let's use the following example:
We know that the density of water is equal to 1000 [kg/m^3], that is, 1 cubic meter of water contains 1000 kilograms of water, using the equation.
1000 = m /1
m = 1000*1 = 1000 [kg]
Now if we have 500 kilograms of water, that would pass with the volume so that the density remains constant.
1000 = 500/v
v = 500/1000
v = 0.5 [m^3]
We can see that the volume of water has halved. Since the mass of water was reduced by half. That is, the relationship between mass and volume is proportional to the density of the material or substance.
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
The standard wave format for any wave is transverse wave
Answer:
8 seconds
Explanation:
power (P) is defined as the rate at which work is done.
power is measured in Watts (W) , when the work done is measured in Joules (J) and time in seconds
by the definition of power,

Answer
given,
mass of the = m₁ = 8.75 Kg
another mass of the object = m₂ = 14 Kg
distance between them = 50 cm
R₁ = 17 cm
R₂ = 50 -17 = 33 cm
a) Force applied due to the Mass 8.75 in +ve x- direction



Force applied due to mass 14 Kg in -ve x-direction



net force
F = F₁ + F₂


Using newton second law



b) As the acceleration of mass comes out to be +ve hence, the direction will be toward the mass of 8.75 Kg