The conversion for km to inches is:
1km=39370.1in
Now we can solve for 56 km..
56km=39370.1*56
56km=<span> 2204725.6in
Answer=2,204,725.6in</span>
Answer:
.
Explanation:
The average kinetic energy per molecule of a ideal gas is given by:

Now, we know that 
Before the absorption we have:
(1)
After the absorption,
(2)
If we want the ratio of v2/v1, let's divide the equation (2) by the equation (1)




Therefore the ratio will be 
I hope it helps you!
Answer:
a)
n=sin i/sin r
n= -0.305/-0.428
n=0.713
b)
sin c=1/n
sin c=1/0.713
sin c= 1.403
c=sin⁻¹(1.403)
c= 40.842°
Explanation:
i hope it will be helpful
plzzz mark as brainliest
Answer:
See below...
Explanation:
Let’s express ⟨α⟩ in terms of ωi , ωf , and Δt. and torque in terms of It , ωi , ωf , and Δt.
STEP 1.
The rate of change of angular velocity is Angular acceleration.
The net change in angular velocity is Average angular acceleration divided by the elapsed time.
⟨α⟩ = ω f −ω i/Δt
STEP 2.
Torque is assumed this way
dω
τ = I ----
dt
.
⟨τ ⟩ = I t (ω f −ω i )/Δt