1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
12345 [234]
3 years ago
11

Astrology, that unlikely and vague pseudoscience, makes much of the position of the planets at the moment of oneâs birth. The on

ly known force that a planet could exerts on us is gravitational, so if there is anything to astrology we should expect this force to be significant.
Required:
a. Calculate the gravitational force, in Newtons, exerted on a 4.1 kg baby by a 120 kg father who is a distance of 0.18 m away at the time of its birth.
b. Calculate the force on the baby, in Newtons, due to Jupiter (the largest planet, which has a mass of 1.90Ã10^27 kg if it is at its closest distance to Earth, 6.29Ã10^11 m away.
c. What is the ratio of the force of the father on the baby to the force of Jupiter on the baby?
Physics
1 answer:
Anton [14]3 years ago
4 0

Answer:

Explanation:

Gravitational force between two objects having mass m₁ and m₂ at a distance R

F = G m₁ m₂ / R²

Force between baby and father F₁ = 6.67x10⁻¹¹ x 4.1 x 120 / .18²

= 1.01 x 10⁻⁶ N

b )

Force between baby and Jupiter

F₂ = 6.67x10⁻¹¹ x 1.9x 10²⁷ x 4.1 / ( 6.29 x 10¹¹ )²

= 1.31 x 10⁻⁶  N

c )

Ratio = 1.01 / 1.31

= .77

You might be interested in
In an undeveloped country, the rural areas will often be off the grid, with no access to consistent electricity. For a household
AveGali [126]

In an undeveloped country, the rural areas will often be off the grid, with no access to consistent electricity. For a household living in this situation, <u>wood</u> would most likely be used to heat the home in the winter.

<u>Explanation:</u>

With the help of wood, we can burn it and make fire to heat the house in winter. In the earlier days, wood was used to produce heat and was used for cooking and other purposes.

So when a rural area does not have electricity,stoves would be fired with either biomass fuels, such as wood, branches, twigs or dung, or coal. Also for heating the home, the same would be used. These fuels are collected from the local environment in rural areas and purchased through markets in urban areas. Even now in some countries like India and China use wood or any other biomass fuel for heating and cooking.

5 0
3 years ago
1. If you add air to a flat tire through a single small entry hole, why does the air spread out to fill the tire?
ikadub [295]

Answer:

The tire fills up just like anything else that holds air when u pump a ball or tire up it fills all the way up cause it is a small confined space and after filling it with air the atoms of the air fill the tire up

Explanation:

7 0
3 years ago
I need help please so fast
Simora [160]

Answer:

DUumb

Explanation:

Duumb

7 0
3 years ago
If a football player has more mass they will also have more ______ ?<br> Fill in the blank
serg [7]

If a football player has more mass, they will also have more <u>momentum</u>. This is because mass is directly proportional to momentum.

3 0
3 years ago
A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a un
Kamila [148]

Answer:

<em>a) 6738.27 J</em>

<em>b) 61.908 J</em>

<em>c)  </em>\frac{4492.18}{v_{car} ^{2} }

<em></em>

Explanation:

The complete question is

A flywheel is a mechanical device used to store rotational kinetic energy for later use. Consider a flywheel in the form of a uniform solid cylinder rotating around its axis, with moment of inertia I = 1/2 mr2.

Part (a) If such a flywheel of radius r1 = 1.1 m and mass m1 = 11 kg can spin at a maximum speed of v = 35 m/s at its rim, calculate the maximum amount of energy, in joules, that this flywheel can store?

Part (b) Consider a scenario in which the flywheel described in part (a) (r1 = 1.1 m, mass m1 = 11 kg, v = 35 m/s at the rim) is spinning freely at its maximum speed, when a second flywheel of radius r2 = 2.8 m and mass m2 = 16 kg is coaxially dropped from rest onto it and sticks to it, so that they then rotate together as a single body. Calculate the energy, in joules, that is now stored in the wheel?

Part (c) Return now to the flywheel of part (a), with mass m1, radius r1, and speed v at its rim. Imagine the flywheel delivers one third of its stored kinetic energy to car, initially at rest, leaving it with a speed vcar. Enter an expression for the mass of the car, in terms of the quantities defined here.

moment of inertia is given as

I = \frac{1}{2}mr^{2}

where m is the mass of the flywheel,

and r is the radius of the flywheel

for the flywheel with radius 1.1 m

and mass 11 kg

moment of inertia will be

I =  \frac{1}{2}*11*1.1^{2} = 6.655 kg-m^2

The maximum speed of the flywheel = 35 m/s

we know that v = ωr

where v is the linear speed = 35 m/s

ω = angular speed

r = radius

therefore,

ω = v/r = 35/1.1 = 31.82 rad/s

maximum rotational energy of the flywheel will be

E = Iw^{2} = 6.655 x 31.82^{2} = <em>6738.27 J</em>

<em></em>

b) second flywheel  has

radius = 2.8 m

mass = 16 kg

moment of inertia is

I = \frac{1}{2}mr^{2} =  \frac{1}{2}*16*2.8^{2} = 62.72 kg-m^2

According to conservation of angular momentum, the total initial angular momentum of the first flywheel, must be equal to the total final angular momentum of the combination two flywheels

for the first flywheel, rotational momentum = Iw = 6.655 x 31.82 = 211.76 kg-m^2-rad/s

for their combination, the rotational momentum is

(I_{1} +I_{2} )w

where the subscripts 1 and 2 indicates the values first and second  flywheels

(I_{1} +I_{2} )w = (6.655 + 62.72)ω

where ω here is their final angular momentum together

==> 69.375ω

Equating the two rotational momenta, we have

211.76 = 69.375ω

ω = 211.76/69.375 = 3.05 rad/s

Therefore, the energy stored in the first flywheel in this situation is

E = Iw^{2} = 6.655 x 3.05^{2} = <em>61.908 J</em>

<em></em>

<em></em>

c) one third of the initial energy of the flywheel is

6738.27/3 = 2246.09 J

For the car, the kinetic energy = \frac{1}{2}mv_{car} ^{2}

where m is the mass of the car

v_{car} is the velocity of the car

Equating the energy

2246.09 =  \frac{1}{2}mv_{car} ^{2}

making m the subject of the formula

mass of the car m = \frac{4492.18}{v_{car} ^{2} }

3 0
3 years ago
Other questions:
  • Calculate the linear acceleration (in m/s2) of a car, the 0.330 m radius tires of which have an angular acceleration of 13.0 rad
    14·1 answer
  • Which two biomes have little precipitation?
    8·1 answer
  • Which of the following characterizes the particles in this diagram?
    9·1 answer
  • 10 Points!
    7·2 answers
  • Gas mileage actually varies slightly with the driving speed of a car​ (as well as with highway vs. city​ driving). Suppose your
    15·1 answer
  • A long solenoid that has 1,140 turns uniformly distributed over a length of 0.350 m produces a magnetic field of magnitude 1.00
    14·1 answer
  • Your total calorie _____ is an estimation of how many calories you burn when you exert yourself. A.Moderate B.Conditions C.Expen
    7·1 answer
  • What are ribosomes?<br><br> I'm tired. But I have insomnia. Big ugh moment. &lt;.&lt;.
    13·1 answer
  • 3. What is the equation for the mechanical advantage of a lever?
    8·1 answer
  • A construction worker drops a hammer from a 15 m high building. How fast is it going before it hits the ground?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!