I'd have to say that the list of choices doesn't go far enough.
Advances in Astronomy have been occurring for at least the past two millennia (2000 years). Maybe longer.
It's mostly used in CHEMICAL PROCESSES.
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.
Answer:
An object can have a displacement in the absence of any external force acting on it
Explanation:
When a object moves with a constant velocity (v), then it gets displaced in the direction of motion but the net external force experienced by the object is zero.
F external =ma
If object moves with constant velocity, acceleration is zero.
Since, a=0 ⟹F external =0
Using s=ut+ 1/2 at ^2
⟹ Displacement s=ut (∵a=0)
Hence, an object can have a displacement in the absence of any external force acting on it
Hope this helped you:)
Catalytic ozone destruction occurs in the stratosphere where the reactions involving bromine, chlorine, hydrogen, nitrogen and oxygen gases form compounds that destroy the ozone layer. The reactions uses a catalyst (speeds up the reaction) in a two step reaction. considering chlorine the reactions appears as follows;
step 1
Cl + O3 = ClO + O2
step 2
ClO + O = Cl + O2
Where by chlorine is released to destroy the ozone layer, this takes place many times even with the other elements (hydrogen, bromine, nitrogen) and the end result is a completely destroyed Ozone layer