Answer:
0.8078 Kg
Explanation:
Pressure of water = 0.15 MPa = 1.5 bar
At critical point of water ,temperature = 647 K=374°C
From the ideal gas equation
P×V= m×R×T
Let us assume volume = 1 m^3
1.5 x 105 x 1 = m x 287 x 647
m= 0.8078 kg
the fraction of mass of liquid at 25°C.
The true answer is: It's conserved because the total number of H atoms on each side is 12.
the first two answer is wrong because it's conserved not as mentioned, It's not conserved.
and the last one also wrong because the total number of O atoms are equal at the two sides but not equal 2.
Answer:

Explanation:
Hello!
In this case, since the density is computed by dividing the mass of the substance by its occupied volume (d=m/V), we first need to realize that 0.8206 g/mL is the same to 0.8206 kg/L, which means we first need to compute the volume in L:

Then, solving for the mass in d=m/V, we get m=d*V and therefore the mass of gasoline in that full tank turns out:

Best regards!
Answer:C
Explanation: The mass is still the same even though they took it apart.