Answer:
The answer is
![2.86 \times {10}^{ - 19} \: J](https://tex.z-dn.net/?f=2.86%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%2019%7D%20%20%5C%3A%20J)
Explanation:
The energy of a quantum of light can be found by using the formula
<h3>E = hf</h3>
where
E is the energy
f is the frequency
h is the Planck's constant which is
6.626 × 10-³⁴ Js
From the question
f = 4.31 × 10¹⁴ Hz
We have
E = 4.31 × 10¹⁴ × 6.626 × 10-³⁴
We have the final answer as
![2.86 \times {10}^{ - 19} \: J](https://tex.z-dn.net/?f=2.86%20%5Ctimes%20%20%7B10%7D%5E%7B%20-%2019%7D%20%20%5C%3A%20J)
Hope this helps you
If a sample of gas is a 0.622-gram, volume of 2.4 L at 287 K and 0.850 atm. Then the molar mass of the gas is 7.18 g/mol
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates to the macroscopic properties of ideal gases.
An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given :
The ideal gas equation is given below.
n = PV/RT
n = 86126.25 x 0.0024 / 8.314 x 287
n = 0.622 / molar mass (n = Avogardos number)
Molar mass = 7.18 g
Hence, the molar mass of a 0.622-gram sample of gas having a volume of 2.4 L at 287 K and 0.850 atm is 7.18 g
More about the ideal gas equation link is given below.
brainly.com/question/4147359
#SPJ1
D, Neon and argon are both noble gases and contain almost the same elements.
Atomic radius aka distance from the nucleus to the outermost energy level. The greater this distance, the less electrostatic attraction between these oppositely charged particles.
Answer:
Option 4 ) 1-butyne
Explanation:
In organic chemistry, you should use IUPAC convention in order to name an organic compound. First of all, you should identify the lenght of the organic chain, for this case, you have 5 C atoms, but in fact, you have a triple bond (which would be a substitute: ethynil-) as a substitute, so the main skeleton would have 4 C atoms (a butane)
Then, you start by numbering carbon N° 1 as the one that has the substitute (triple bound)-starting from the right, it would be the second C):
CH₃-CH₂-CH₂-C≡CH
Which will finally leads us to 1-butyne