Answer:
The reaction will be slower because the leaving group will be poorer.
Explanation:
One Important thing to put at the back of our mind is that weak bases are good leaving groups. Another thing to take note is that in the halogen series(which is our main subject in this question) as you go down the group the greater or the more heavy the halide is and the heavier halides are more stable that is Bromine will be more stable than chlorine.
Now, we are now told that the bromo halide is been replaced by the chloro halide which means that the rate of Reaction will surely decrease because the leaving group. The cl^- is a stronger base.
Carbon dioxide emissions from, well, whatever emits CO2 really.
Answer:
12 mi/h
Explanation:
Step 1: Given data
Step 2: Convert "d" to miles
We will use the conversion factor 1 mi = 1.60934 km.
6 km × 1 mi/1.60934 km = 3.7 mi
Step 3: Convert "t" to hours
We will use the conversion factor 1 h = 60 min.
19 min × 1 h/60 min = 0.32 h
Step 4: Calculate the average speed of the runner (s)
The speed is equal to the quotient between the total distance and the time elapsed.
s = d/t
s = 3.7 mi/0.32 h = 12 mi/h
Answer : The volume of liquid is 420 mL.
Explanation :
Density : The mass per unit volume of a substance is known as density.
Formula used:

As we are given:
Density of mercury = 13.5 g/mL
Mass = 12.5 pounds
First we have to convert mass of sample from pound to gram.
Conversion used:
As, 1 pound = 453.6 g
So, 12.5 pounds = 453.6 × 12.5 g = 5670 g
Now we have to calculate the volume of liquid.

Now putting all the given values in this formula, we get:

Volume = 420 mL
Therefore, the volume of liquid is 420 mL.
Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.