Answer:
The radius of the centrifuge.
Explanation:
Hello,
Since the radius of the centrifuge is just a design parameter, it wouldn't be a cause of failure because it is used to know how many tubes could be fitted in into the centrifuge. On the other hand, keeping you attention away from other factors could turn into a failure as long as the sample could be poured down or just turn out inadequate for the expected results.
Best regards.
Answer:Zn(s) + H2SO4(aq) → ZnSO4(aq) + H2(g)
O2Zn(s) + H2SO4(aq) → 22nH(aq) + SO4(s)
Explanation:
<u>Answer:</u> The amount of sample left after 20 years is 288.522 g and after 50 years is 144.26 g
<u>Explanation:</u>
We are given a function that calculates the amount of sample remaining after 't' years, which is:

Putting values in above equation:


Hence, the amount of sample left after 20 years is 288.522 g
Putting values in above equation:


Hence, the amount of sample left after 50 years is 144.26 g
Answer:
490 in^3 = 8.03 L
Explanation:
Given:
The engine displacement = 490 in^3
= 490 in³
To determine the engine piston displacement in liters L;
(NOTE: Both in^3 (in³) and L are units of volume). Hence, to find the engine piston displacement in liters (L), we will convert in^3 to liters (L)
First, we will convert in³ to cm³
Since 1 in = 2.54 cm
∴ 1 in³ = 16.387 cm³
If 1 in³ = 16.387 cm³
Then 490 in³ = (490 in³ × 16.387 cm³) / 1 in³ = 8029.63 cm³
∴ 490 in³ = 8029.63 cm³
Now will convert cm³ to dm³
(NOTE: 1 L = 1 dm³)
1 cm = 1 × 10⁻² m = 1 × 10⁻¹ dm
∴ 1 cm³ = 1 × 10⁻⁶ m³ = 1 × 10⁻³ dm³
If 1 cm³ = 1 × 10⁻³ dm³
Then, 8029.63 cm³ = (8029.63 cm³ × 1 × 10⁻³ dm³) / 1 cm³ = 8.02963 dm³
≅ 8.03 dm³
∴ 8029.63 cm³ = 8.03 dm³
Hence, 490 in³ = 8029.63 cm³ = 8.03 dm³
Since 1L = 1 dm³
∴ 8.03 dm³ = 8.03 L
Hence, 490 in³ = 8.03 L
P=nRTV
hope this help<span />