Answer:
using a more concentrated potassium hydroxide
Explanation:
<em>The option that would likely increase the rate of reaction would be to use a more concentrated potassium hydroxide.</em>
<u>The concentration of reactants is one of the factors that affect the rate of reaction. The more the concentration of the reactants, the faster the rate of reaction. </u>
Granted that there are enough of the other reactants, increasing the concentration of one of the reactants will lead to an increased rate of reaction.
Hence, using a more concentrated potassium hydroxide which happens to be one of the reactants would likely increase the rate of reaction.
Our reaction balanced equation at equilibrium N2(g) + 3 H2(g) ↔ 2 NH3(g)
and we have the Kp value at equilibrium = 4.51 X 10^-5
A) 98 atm NH3, 45 atm N2, 55 atm H2
when Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 98^2 / (45 * 55^3) = 1.28 x 10^-3
by comparing the Kp by the Kp at equilibrium(the given value) So,
Kp > Kp equ So the mixture is not equilibrium,
it will shift leftward (to decrease its value) towards the reactants to achieve equilibrium.
B) 57 atm NH3, 143 atm N2, no H2
∴ Kp = [P(NH3)]^2 / [P(N2)]
= 57^2 / 143 = 22.7
∴Kp> Kp equ (the given value)
∴it will shift leftward (to decrease its value) towards reactants to achieve equilibrium.
c) 13 atm NH3, 27 atm N2, 82 atm H2
∴Kp = [P(NH3)]^2 / [P(N2)] * [P(H2)]^3
= 13^2 / (27* 82^3) = 1.14 X 10^-5
∴ Kp< Kp equ (the given value)
∴it will shift rightward (to increase its value) towards porducts to achieve equilibrium.
Answer:
KBr is limiting reactant.
Explanation:
Given data:
Mass of KBr =4g
Mass of Cl₂ = 6 g
Limiting reactant = ?
Solution:
Chemical equation:
2KBr + Cl₂ → 2KCl + Br₂
Number of moles of KBr:
Number of moles = mass/molar mass
Number of moles = 4 g/ 119 gmol
Number of moles = 0.03 mol
Number of moles of Cl₂:
Number of moles = mass/molar mass
Number of moles = 6 g/ 70 gmol
Number of moles = 0.09 mol
Now we will compare the moles of reactant with product.
KBr : KCl
2 : 2
0.03 : 0.03
KBr : Br₂
2 : 1
0.03 : 1/2×0.03= 0.015
Cl₂ : KCl
1 : 2
0.09 : 2/1×0.09 = 0.18
Cl₂ : Br₂
1 : 1
0.09 : 0.09
Less number of moles of product are formed by the KBr thus it will act as limiting reactant while Cl₂ is present in excess.
Answer:
C.
Explanation:
We get it from the food we eat by mixing it with fluids. Also, you can always look up the answer.
Hope this helps! :) Plz mark as brainliest!