Answer: false
Explanation:
Nitrogen is actually the most abundant gas in the atmosphere.
The answer to the question is false. Hope this helps you!
Explanation:
"Static friction is a force that keeps an object at rest. It must be overcome to start moving the object."
(556 x 0.68) = static friction of 378.08N. before movement occurs.
The forces (a) and (b) will not move it.
Each will incur a frictional force preventing movement equal to itself, = 222N. and 334N. respectively.
Forces (c) and (d) will move it, and accelerate it.
Forces (c) and (d) will both encounter friction of (556 x 0.56) = 311.36N. when the cabinet is moving.
Refractive Index is a ratio of two similar physical quantity which is dimension less
refractive index = sin I / sin r
therefore it doesn't have a unit.
<span>
English "natural philosopher" (the contemporary term for physicist) Michael Faraday is renowned for his discovery of the principles of electro-magnetic induction and electro-magnetic rotation, the interaction between electricity and magnetism that led to the development of the electric motor and generator. The unit of measurement of electrical capacitance - the farad (F) - is named in his honor.
Faraday's experimental work in chemistry, which included the discovery of benzene, also led him to the first documented observation of a material that we now call a semiconductor. While investigating the effect of temperature on "sulphurette of silver" (silver sulfide) in 1833 he found that electrical conductivity increased with increasing temperature. This effect, typical of semiconductors, is the opposite of that measured in metals such as copper, where conductivity decreases as temperature is increased.
In a chapter entitled "On Conducting Power Generally" in his book Experimental Researches in Electricity Faraday writes "I have lately met with an extraordinary case ... which is in direct contrast with the influence of heat upon metallic bodies ... On applying a lamp ... the conducting power rose rapidly with the heat ... On removing the lamp and allowing the heat to fall, the effects were reversed."
We now understand that raising the temperature of most semiconductors increases the density of charge carriers inside them and hence their conductivity. This effect is used to make thermistors - special resistors that exhibit a decrease in electrical resistance (or an increase in conductivity) with an increase in temperature.
<span>
Next Milestone
</span>
Contemporary Documents
<span>
<span>Faraday, M. Experimental Researches in Electricity, Volume 1. (London: Richard and John Edward Taylor, 1839) pp.122-124 (para. 432). Note: This section appears on different pages in later editions of the book. The material in the book is reprinted from articles by Faraday published in the Philosophical Transactions of the Royal Society of 1831-1838. </span>
</span>
More Information
<span>
<span>Hirshfeld, Alan W. The Electric Life of Michael Faraday. Walker & Company (March 7, 2006).</span>
<span>Friedel, Robert D. Lines and Waves: Faraday, Maxwell and 150 Years of Electromagnetism. Center for the History of Electrical Engineering, Institute of Electrical and Electronics Engineers (1981).</span>
</span>
</span>
*heat transfer energy, As it always flow from higher temperature to lower temperature till it reach the thermal equilibrium.
example: -friction.
- collisions.
- the hot cup which's hotter than your hand✋will transfer heat in your hand. and a cold piece of ice which's colder than your hand to causing the heat transfer out of your hand .
*temperature ️ depends on the move of particle and we have a different shape of motion like:
translational motion.
rotational motion.
vibrational motion.
when the temperature:
increases it has more kinetic energy and faster moving particles and the object expanded which known as (thermal expansion).
decreases it has less kinetic energy and slower moving particles.
As kinetic energy is 1/2 mV².
example: -the mercury in thermometers.
*Absolute zero :
The theoretical temperature at which substances possess no thermal energy, equal to 0 K, −273.15°C, or −459.67°F.
*specific heat "c" :
is essentially a measure of how thermally insensitive a substance is to the addition of energy.
c=Q/m∆T
where Q is energy .
note water has a higher specific heat, and lower temperature.
*conduction <em><u>example</u></em> When the stove is turned on, the skillet becomes very hot due to the conduction of heat from the burner to the skillet.