Answer:
opposite the sun. between the Earth and the sun. rising perpendicular to the sun.
Explanation:
Adjust the height of the wooden rod so that it just touches the surface of the water. Switch on the lamp and motor and adjust the speed of the motor until low frequency waves can be clearly observed... Count the number of waves passing a point in ten seconds then Divide by ten to record frequency.
Answer:
1. v = 6.67 m/s
2. d = 9.54 m
Explanation:
1. To find the horizontal velocity of the rock we need to use the following equation:
<u>Where</u>:
d: is the distance traveled by the rock
t: is the time
The time can be calculated as follows:
<u>Where:</u>
g: is gravity = 9.8 m/s²
Now, the horizontal velocity of the rock is:
Hence, the initial velocity required to barely reach the edge of the shell below you is 6.67 m/s.
2. To calculate the distance at which the projectile will land, first, we need to find the time:

So, the distance is:
Therefore, the projectile will land at 9.54 m of the second cliff.
I hope it helps you!
Explanation:
Formula for calculating the area of a rectangle A = Length *width
For statement A;
Given area of a rectangle with measured length = 2.536 mm and width = 1.4 mm.
Area of the rectangle = 2.536mm * 1.4mm
Area of the rectangle = 3.5504mm²
The rule of significant figures states that we should always convert the answer to the least number of significant figure amount the given value in question. Since 1.4mm has 2 significant figure, hence we will convert our answer to 2 significant figure.
Area of the rectangle = 3.6mm² (to 2sf)
For statement B;
Given area of a rectangle with measured length = 2.536 mm and width = 1.41 mm.
Area of the rectangle = 2.536mm * 1.41mm
Area of the rectangle = 3.57576mm²
Similarly, Since 1.41mm has 3 significant figure compare to 2.536 that has 4sf, hence we will convert our answer to 3 significant figure.
Area of the rectangle = 3.58mm² (to 3sf)
Based on the conversion, it can be seen that 3.6mm² is greater than 3.58mm², hence the area of rectangle in statement A is greater than the area of the rectangle in statement B.
Wavelength = (speed) / (frequency)
= (3 x 10⁸ m/s) / (1 x 10⁸ /s) = 3 meters