Answer:
T=1022.42 N
Explanation:
Given that
l = 32 cm ,μ = 1.5 g/cm
L =2 m ,V= 344 m/s
The pipe is closed so n= 3 ,for first over tone


f= 129 Hz
The tension in the string given as
T = f²(4l²) μ
Now by putting the values
T = f²(4l²) μ
T = 129² x (4 x 0.32²) x 1.5 x 10⁻³ x 100
T=1022.42 N
<span>which of those can we not get back once it has been used, the answer is oil or petroleum</span>
Answer:
Explanation:
If a perfect vacuum existed in any volume, then no sound would be able to propagate through it, because a sound wave is a pressure wave, and there would be identically zero pressure. Of course, we could get into speculations about “dark energy” or “vacuum energy” supporting pressure waves, but let’s not go there.
Conductors are substances that pass an electrical charge.
Semiconductors are substances whose electrical conductivity is lower than that of metals and greater than that of dielectrics.
Electricity nonconductors or insulators - in the terminology of Faraday - dielectrics (see). N. perfect does not exist; they represent only a large resistance to galvanic current and then different bodies in varying degrees (see Galvanic current), so that between poor and good conductors there are many bodies of average conductivity. N. The galvanic current is also the best insulators of static electricity. N. Heat or its bad conductors are at the same time electrical insulators (see Thermal Conductivity).
A dielectric (insulator) is a substance that is poorly conducting or not conducting at all. The concentration of free charge carriers in a dielectric does not exceed 108 cm-3. The main property of the dielectric is the ability to polarize in an external electric field. From the point of view of the band theory of a solid body, a dielectric is a substance with a band gap greater than 3 eV.
Answer:
7.5s
Explanation:
Given parameters:
Velocity = 30m/s
Deceleration = 4m/s²
Unknown:
Time it takes for the car to come to complete rest = ?
Solution:
To solve this problem, we use the kinematics expression below:
v = u + at
Since this is a deceleration
v = u - at
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time taken
v - u = -at
0 - 30 = -4 x t
-30 = -4t
t = 7.5s