1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
15

A sample of Iron has a mass of 46.8 grams and a volume of 6 cm 3. what is the density of iron?

Physics
1 answer:
Gwar [14]3 years ago
5 0
The answer would be 7.8 g/cm3. Mass/volume= density.
You might be interested in
Which is the BEST definition of refraction? A) Light or sound waves change direction. B) Light or sound waves bounce off a mediu
melisa1 [442]
The answer to this is A. this is because, refraction with a light or sound wave changing its direction involve propagation,(in which propagation is the change in direction of a light or sound wave)


4 0
3 years ago
Read 2 more answers
What is the acceleration of a car that goes from 40 m/s to 80 m/s in 2s?
Law Incorporation [45]

Answer:

2

Explanation:

pls brainlyest i need it

3 0
2 years ago
4) A satellite, mass m, is in circular orbit (radius r) around the earth, which has mass ME and radius Re. The value of r is lar
defon
<h2>Answers:</h2>

(a) The kinetic energy of a body is that energy it possesses due to its movement and is defined as:

K=\frac{1}{2}m{V}{2}     (1)

Where m is the mass of the body and V its velocity.

In this specific case of the satellite, its kinetic energy K_m taking into account its mass m is:

K_{m}=\frac{1}{2}m{V}^{2}     (2)

On the other hand, the velocity of a satellite describing a circular orbit is constant and defined by the following expression:

V=\sqrt{G\frac{ME}{r}}     (3)

Where G is the gravity constant, ME the mass of the Earth and r the radius of the orbit <u>(measured from the center of the Earth to the satellite). </u>

Now, if we substitute the value of V from equation (3) on equation (2), we will have the final expression of the kinetic energy of this satellite:

K_{m}=\frac{1}{2}m{\sqrt{G\frac{ME}{r}}}^{2}     (4)

Finally:

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)  >>>>This is the kinetic energy of the satellite

(b) According to Kepler’s 2nd Law applied in the case of a circular orbit, its Period T is defined as:

T=2\pi\sqrt{\frac{r^{3}}{\mu}}     (6)

Where \mu is a constant and is equal to GME. So, this equation in these terms is written as:

T=2\pi\sqrt{\frac{r^{3}}{GME}}     (7)

As we can see, <u>the Period of the orbit does not depend on the mass of the satellite </u>m, it depends on the mass of the greater body (the Earth in this case) ME, the radius of the orbit and the gravity constant.

(c) The gravitational force described by the law of gravity is a central force and therefore is <u>a conservative force</u>. This means:

1. The work performed by a gravitational force to move a body from a position A to a position B <u>only depends on these positions and not on the path followed to get from A to B. </u>

2. When the path that the body follows between A and B is a c<u>losed path or cycle</u> (as this case with a <u>circular orbit</u>), <u>the gravitational work is null or zero</u>.

<h2>This is because the gravity force that maintains an object in circular motion is a centripetal force, that is, <u>it always acts perpendicular to the movement</u>. </h2>

Then, in the case of the satellite orbiting the Earth in a circular orbit, its movement will always be perpendicular to the gravity force that attracts it to the planet, at each point of its path.

(d)  The total Mechanical Energy E of a body is the sum of its Kinetic Energy K and its Potential Energy P:

E=K+P     (8)

But in this specific case of the circular orbit, its kinetic energy will be expresses as calculated in the first answer (equation 5):

K_{m}=\frac{1}{2}Gm\frac{ME}{r}     (5)

And its potential energy due to the Earth gravitational field as:

P_{m}=-G\frac{mME}{r}     (9)

This energy is negative by definition.

So, the total mechanical energy of the orbit, also called the Orbital Energy is:

E=\frac{1}{2}Gm\frac{ME}{r}+(- G\frac{mME}{r})      (10)

Solving equation (10) we finally have the Orbital Energy:

E=-\frac{1}{2}mME\frac{G}{r}     (11)

At this point, it is necessary to clarify that a satellite (or any other celestial body) orbiting another massive body, can describe one of these types of orbits depending on its Orbital Total Mechanical Energy E:

-When E=0:

We are talking about an <u>open orbit</u> in which the satellite escapes from the attraction of the planet's gravitational field. The shape of its trajectory is a parabola, fulfilling the following condition:

K_{m}=-P_{m}

Such is the case of some comets in the solar system.

-When E>0:

We are also talking about <u>open orbits</u>, which are hyperbolic, being K_{m}>P_{m}

<h2>-When E: >>>><u>This case</u></h2>

We are talking about <u>closed orbits</u>, that is, the satellite will always be "linked" to the gravitational field of the planet and will describe an orbit that periodically repeats with a shape determined by the relationship between its kinetic and potential energy, as follows:

-Elliptical orbit: Although E is constant, K_m and P_m are changing along the trajectory .

-Circular orbit: When at all times both the kinetic energy K_m and the potential P_m remain constant, resulting in a total mechanical energy E as the one obtained in this exercise. This means that the speed is constant too and <u>is the explanation of why this Energy has a negative sign. </u>

3 0
3 years ago
An autographed baseball rolls off of a 0.91 m high desk and strikes the floor 0.84 m away from the desk. How fast was it rolling
Rudik [331]
The initial velocity (its speed before falling off) is approximately 1.95 m/s
4 0
3 years ago
When something is moving, it is in motion. Pressing the gas pedal in a car will put the car in motion. Two important properties
Alex
A They will run an equal distance
5 0
3 years ago
Read 2 more answers
Other questions:
  • A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. where should one hang a mass of 0.50 kg to balance the stick?
    13·1 answer
  • How does an atom change if all of its electrons are removed?
    10·1 answer
  • A light spring with a force coefficient 11.85 N/m is compressed by 14 cm as it is held between a 0.27 kg block on the left and a
    5·1 answer
  • A runner has a speed of 5m/s and a mass of 130 kg what is his kinetic energy?
    13·2 answers
  • You drive a car 640 m to the east, then 340 m to the north what is the magnitude of your displacement
    12·1 answer
  • How much energy (in kWh) is produced in one day by a solar panel of surface area A =15
    8·1 answer
  • A 36.75 kg boulder is rolling down a hill. If, at one moment, the boulder has a momentum of 241.5 kg. m/s, what is its
    14·1 answer
  • How does the thermoflask prevent heat loss​
    7·1 answer
  • Describe the difference between a transverse wave and longitudinal wave. Include the parts that you would find on a transverse w
    8·2 answers
  • The Sun is divided into three regions.<br> True оr False?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!