Answer:
I'm pretty sure its h bonding. however I could very welp see it being Van der Waals
<u>Answer:</u> The value of
for the final reaction is 
<u>Explanation:</u>
The given chemical equations follows:
<u>Equation 1:</u> 
<u>Equation 2:</u> 
The net equation follows:

As, the net reaction is the result of the addition of reverse of first equation and the reverse of second equation. So, the equilibrium constant for the net reaction will be the multiplication of inverse of first equilibrium constant and the inverse of second equilibrium constant.
The value of equilibrium constant for net reaction is:

We are given:


Putting values in above equation, we get:

Hence, the value of
for the final reaction is 
Answer:
244.76
Explanation:
The weight of grams by 1.82 moles of lithium carbonate would be: 134.481438 So we need to use this equation to find mass by grams m × g = ms Where m is for moles, g for grams, and ms for mass. So now we need use this equation: 1.82 × 134.481438 = ? 1.82 × 134.481438 = 244.75621716 244.75621716, rounded-up (to the nearest-tenths place) is 244.76. So now you have it! The mass of 1.82 moles of lithium carbonate is 244.76!
The density of an object ρ = 24 g/ml
<h3>Further explanation</h3>
Given
mass of an object = 120 g
volume = 5 ml
Required
The density
Solution
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:

ρ = density
m = mass
v = volume
Input the value :
ρ = 120 g : 5 ml
ρ = 24 g/ml