When the balanced equation for this reaction is:
2Fe + 3H2O → Fe2O3 + 3H2
and according to the vapour pressure formula:
PV= nRT
when we have P is the vapor pressure of H2O= 0.121 atm
and V is the volume of H2O = 4.5 L
and T in Kelvin = 52.5 +273 = 325.5 K
R= 0.08205 atm-L/g mol-K
So we can get n H2O
So, by substitution:
n H2O = PV/RT
= (0.121*4.5)/(0.08205 * 325.5) = 0.02038 gmol
n Fe2O3 = 0.02038 * (1Fe2O3/ 3H2O) = 0.00679 gmol
Note: we get (1FeO3/3H2O) ratio from the balanced equation.
we can get the Mass of Fe2O3 from this formula:
Mass = number of moles * molecular weight
when we have a molecular weight of Fe2O3 = 159.7
= 0.00679 * 159.7 = 1.084 g
∴ 1.084 gm of Fe2O3 will produced
Answer:
False
Explanation:
Phosphorus is number 15 on the periodic table, so its electronic configuration is:

Answer:
If the volume of the container is decreased by a factor of 2 the pressure is is increased by the same factor to 1664 torr.
Explanation:
Here we have Boyle's law which states that, at constant temperature, the volume of a given mass of gas is inversely proportional to its pressure
V ∝ 1/P or V₁·P₁ = V₂·P₂
Where:
V₁ = Initial volume
V₂ = Final volume = V₁/2
P₁ = Initial pressure = 832 torr
P₂ = Final pressure = Required
From V₁·P₁ = V₂·P₂ we have,
P₂ = V₁·P₁/V₂ = V₁·P₁/(V₁/2)
P₂ = 2·V₁·P₁/V₁ = 2·P₁ = 2× 832 torr = 1664 torr
Answer:
(See explanation for further details)
Explanation:
1) The quantity of moles of sulfur is:


2) The number of atoms of helium is:


3) The quantity of moles of carbon monoxide is:


4) The number of molecules of sulfur dioxide is:


5) The quantity of moles of sodium chloride is:


6) The number of formula units of magnesium iodide is:


7) The quantity of moles of potassium permanganate is:


8) The number of molecules of carbon tetrachloride is:


9) The quantity of moles of aluminium is:


10) The number of molecules of oxygen difluoride is:

