Answer:
15.35 g of (NH₄)₃PO₄
Explanation:
First we need to look at the chemical reaction:
3 NH₃ + H₃PO₄ → (NH₄)₃PO₄
Now we calculate the number of moles of ammonia (NH₃):
number of moles = mass / molecular wight
number of moles = 5.24 / 17 = 0.308 moles of NH₃
Now from the chemical reaction we devise the following reasoning:
if 3 moles of NH₃ are produce 1 mole of (NH₄)₃PO₄
then 0.308 moles of NH₃ are produce X moles of (NH₄)₃PO₄
X = (0.308 × 1) / 3 = 0.103 moles of (NH₄)₃PO₄
mass = number of moles × molecular wight
mass = 0.103 × 149 = 15.35 g of (NH₄)₃PO₄
The closer to the top the metal is in the list, the more active the metal is and the stronger a reducing agent the metal is. When two different metals are involved in a redox reaction, the metal higher in the list will be oxidized and give up electrons that will reduce the cation of the less active metal.
100. g CCl4* (1 mol CCl4/ 153.8 g CCl4)* (6.02*10^23 CCl4 molecules/ 1 mol CCl4)= 3.91*10^23 CCl4 molecules.
(Note that the units cancel out so you get the answer)
Hope this helps~
Answer:
See explanation
Explanation:
The reaction between alcohol and acidified potassium dichromate is a redox reaction. This reaction can be used to detect a drunken driver.
Alcohols can be oxidized to aldehydes, ketones and carboxylic acids depending on the structure of the alcohol. Primary alcohols yield adehydes and carboxylic acids while secondary alcohols are oxidized to ketones.
The colour of the acidified potassium dichromate turns from orange to green when exposed to alcohols from the breath of a drunken driver.
It has 78 neutrons in a cesium