That looks like cells of a multicellular organism, so B.
When equilibrium has been reached so, according to this formula we can get the specific heat of the unknown metal and from it, we can define the metal as each metal has its specific heat:
Mw*Cw*ΔTw = Mm*Cm*ΔTm
when
Mw → mass of water
Cw → specific heat of water
ΔTw → difference in temperature for water
Mm→ mass of metal
Cw→ specific heat of the metal
ΔTm → difference in temperature for metal
by substitution:
100g * 4.18 * (40-39.8) = 8.23 g * Cm * (50-40)
∴ Cm = 83.6 / 82.3 = 1.02 J/g.°C
when the Cm of the Magnesium ∴ the unknown metal is Mg
Mass of Oxygen: 0.0159 grams
Moles of Oxygen: 9.94x10^-4
To find the mass of oxygen, subtract the mass of copper from the total mass.

There are 0.0159 grams of Oxygen.
To find how many moles there are, divide the given amount of oxygen by the molar mass (atomic mass) of oxygen because that mass is the same as one mole of oxygen.
Molar mass of Oxygen: 16.00

There are 9.94*10^-4 moles of Oxygen.
The top left image is a delta, which is caused by deposition.
The top middle image is a lake, which is caused by erosion.
The bottom left is a mountain, which is caused by plate tectonics.
The bottom middle is a volcano, which is caused by uplift.
Kr= krypton
K= potassium
C=carbon
En= neon
Si= silicon
Au= gold
Ni= nitrogen
Br= berillium
Mg=magnesium
Mn= mangenese
Al: aluminum