<em>V= 110mL = 110cm³ = 0,11dm³</em>
<em>C = 1,244 mol/L = 1,244 mol/dm³</em>
C = n/V
n = 1,244×0,11
<u>n = 0,13684 moles</u>
<em>mCa(OH)₂ = 74 g/mol</em>
1 mole Ca(OH)₂ ------------ 74g
0,13684 ---------------------- X
X = 74×0,13684
<u>X = 10,12616g</u>
:)
Answer:
ELEMENTS
COMPOUNDS
Elements are made up of one kind of atoms.
Compounds are made up of two or more kinds of atoms.
Elements cannot be broken down into simpler substances by any physical or chemical method.
Compounds can be broken down into simpler substances by chemical methods.
Elements have their own set of properties.
Properties of a compound differ from those of their elements.
Examples: Hydrogen, Oxygen
Examples: Water, Sodium chloride
Landsat - (USA)
Spot - (France)
Radarsat (Canada)
<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C