To determine the molar mass of the unknown gas, we use Graham's Law of Effusion where it relates the effusion rates of two gases with their molar masses. It is expressed as r1/r2 = √M2/M1. We calculate as follows:
Let 1 = argon gas 2 = unknown gas
r2 = 0.91r1r1/r2 = 1/0.91
1/0.91 = √M2/M1 = √M2/40M2 = 48.30 g/mol
Answer:
S+ F2 ⇒ SF
S=1
F =2
So S +F2 ......... 2SF
2S + F2 ..........2SF this is a balance equation
S=2 F=2 in left side s=2 F = 2 in rightside
Explanation:⇆
⇒
Answer:
B. Excited state
Explanation:
Energy levels higher than the ground state are called the excited states. This concept is based on the premise that electrons can move round the nucleus in certain permissibe orbits or energy levels.
The ground state is the lowest energy state available to the electron. This is usually the most stable state.
The excited state is any level higher than the ground state. An electron in an energy level has a definite amount of energy associated with it at that level.
A.) covalent
c.) covalent
b.) ionic
d.) covalent
M₁ x V₁ = M₂ x V₂
2.5 x V₁ = 0.50 x 100.0
2.5 x V₁= 50
V₁ = 50 / 2.5
V₁= 20 mL
hope this helps!