Answer:
Explanation:
Given that:
The flow rate Q = 0.3 m³/s
Volume (V) = 200 m³
Initial concentration
= 2.00 ms/l
reaction rate K = 5.09 hr⁻¹
Recall that:







where;







Thus; the concentration of species in the reactant = 102.98 mg/l
b). If the plug flow reactor has the same efficiency as CSTR, Then:
![t _{PFR} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=t%20_%7BPFR%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{k} \Big [ In ( \dfrac{C_o}{C_e}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7Bk%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7BC_o%7D%7BC_e%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} = \dfrac{1}{5.09} \Big [ In ( \dfrac{200}{102.96}) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D%20%5Cdfrac%7B1%7D%7B5.09%7D%20%5CBig%20%5B%20In%20%28%20%5Cdfrac%7B200%7D%7B102.96%7D%29%20%5CBig%20%5D)
![\dfrac{V_{PFR}}{Q_{PFR}} =0.196 \Big [ In ( 1.942) \Big ]](https://tex.z-dn.net/?f=%5Cdfrac%7BV_%7BPFR%7D%7D%7BQ_%7BPFR%7D%7D%20%3D0.196%20%5CBig%20%5B%20In%20%28%201.942%29%20%5CBig%20%5D)





The volume of the PFR is ≅ 140 m³
Answer:
Under the concept of popular sovereignty, the people of each territory would decide whether or not slavery would be permitted.
Explanation:
hopes this help 3> D:
Answer:
Incomplete combustion of fuels produces a very poisonous gas called carbon monoxide:Excessive inhaling of carbon dioxide gas can kill a person.
I don't know if this is correct, your question did not have much context.
Answer:
Rate = k [OCl] [I]
Explanation:
OCI+r → or +CI
Experiment [OCI] M I(-M) Rate (M/s)2
1 3.48 x 10-3 5.05 x 10-3 1.34 x 10-3
2 3.48 x 10-3 1.01 x 10-2 2.68 x 10-3
3 6.97 x 10-3 5.05 x 10-3 2.68 x 10-3
4 6.97 x 10-3 1.01 x 10-2 5.36 x 10-3
The table above able shows how the rate of the reaction is affected by changes in concentrations of the reactants.
In experiments 1 and 3, the conc of iodine is constant, however the rate is doubled and so is the conc of OCl. This means that the reaction is in first order with OCl.
In experiments 3 and 4, the conc of OCl is constant, however the rate is doubled and so is the conc of lodine. This means that the reaction is in first order with I.
The rate law is given as;
Rate = k [OCl] [I]