Answer:
Answer: The solubility of B is high than the solubility of A.
Explanation:
The solubility is defined as the amount of substance dissolved in a given amount of solvent. More the solute gets dissolved, high will be the solubility and less the solute dissolved, low will be the solubility.
Mass of undissolved substance of substance A is more than Substance B at every temperature. This implies that less amount of solute gets dissolved in the given amount of solvent.
Therefore, B has high solubility than substance A.
Finding percent composition is fairly easy. You only need to divide the mass of an element by the total mass of the compound. We can do this one element at a time.
First, let's find the total mass by using the masses of the elements given on the periodic table.
7 x 12.011 (mass of Carbon) = 84.077
5 x 1.008 (mass of Hydrogen) = 5.04
3 x 14.007 (mass of Nitrogen) = 42.021
6 x 15.999 (mass of Oxygen) = 95.994
Add all of those pieces together.
84.077 + 5.04 + 42.021 + 95.994 = 227.132 g/mol is your total. Since we also just found the mass of each individual element, the next step will be very easy.
Carbon: 84.077 / 227.132 = 0.37016 ≈ 37.01 %
Hydrogen: 5.04 / 227.132 = 0.022189 ≈ 2.22 %
Nitrogen: 42.021 / 227.132 = 0.185 ≈ 18.5 %
Oxygen: 95.994 / 227.132 = 0.42263 ≈ 42.26 %
You can check your work by making sure they add up to 100%. The ones I just found add up to 99.99, which is close enough. A small difference (no more than 0.03 in my experience) is just a matter of where you rounded your numbers.
Answer:
713.51 N/m
Explanation:
Hook's Law: This law states that provided the elastic limit is not exceeded, the extension in an elastic material is directly proportional to the applied force.
From hook's law,
F = ke ...........................Equation 1
Where F = Force exerted on the bowstring, e = Extension/compression of the bowstring, k = Spring constant of the bow.
Make k the subject of the equation,
k = F/e ............................ Equation 2
Given: F = 264 N, e = 0.37 m.
Substitute into equation 2
k = 264/0.37
k = 713.51 N/m
Hence the spring constant of the bow = 713.51 N/m
Pressure, volume, temperature, # moles Pressure, volume and temperature, and moles of gas
Hope that helps!!!!