<span> If You Have Nothing to Hide, You Have Nothing to Fear</span>
It considered as Zero Gage pressure.
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzman law that is responsible for calculating radioactive energy.
Mathematically this expression can be given as

Where
A = Surface area of the Object
Stefan-Boltzmann constant
e = Emissivity
T = Temperature (Kelvin)
Our values are given as





Replacing at our equation and solving to find the temperature 1 we have,




Therefore the the temperature of the coldest room in which this person could stand and not experience a drop in body temperature is 12°C
Answer: 3.12 * 10^12 F ( 3.12 pF)
Explanation: To calculate this capacitor of two hollow, coaxial, iron cylinders, we have to determine the potental differente between them and afeter that to use C=Q/ΔV
The electric field in th eregion rinner<r<router
By using the Gaussian law
∫E*ds=Q inside/εo
E*2*π*rinner^2*L= Q /εo
E=Q/(2*π*εo*r^2)
[Vab]=\int\limits^a_b {E} \, dr
where a and b are the inner and outer radii.
Then we have:
ΔV= 2*k*(Q/L)* ln (b/a)
replacing the values and using that C=Q/ΔV
we have:
C= L/(2*k*ln(b/a)=0.17/(2*9*10^9*3.023)=3.12 pF
Explanation: It is because when a car is moving both the car and the driver is in inertia of motion. When a car is involved in collision it comes to a sudden stop and the car comes into inertia of rest whereas the person still in inertia of motion moves forward and might result in major injuries. But this can be prevented by wearing a seatbelt
Hope it helps :)