<span>The quick way to visualize this is to compare isometric and perspective drawings of a cube. In the isometric drawing, all the edges of the cube would be parallel in sets of four. In the perspective drawing, the edges would taper towards one or more vanishing points.
The isometric drawing, being easier to construct, perserving all scales and dimensions, is the preferred method for mechanical drawings, and are practical for use in the shop. The perspective drawing, which are trickier to draw properly, and does not preserve scales and dimensions, is the preferred method for architectural drawings, because they illustrate what the eye actually sees.</span>
Answer:
momentum in a body can be calculated using
<em><u>Mome</u></em><em><u>ntum</u></em><em><u>=</u></em><em><u>Mass×</u></em><em><u>V</u></em><em><u>e</u></em><em><u>l</u></em><em><u>o</u></em><em><u>s</u></em><em><u>i</u></em><em><u>t</u></em><em><u>y</u></em><em><u> </u></em>
<em><u>i</u></em><em><u>e(</u></em><em><u>p</u></em><em><u>=</u></em><em><u>m×</u></em><em><u>v</u></em><em><u>)</u></em>
Explanation:
Initial velocity is 25m/s i.e. u. Final velocity would be zero since the bus stopped. It is noted that the bus deccelartion of 4m/s, so the acceleration should be considered negative of 4m/s I.e. 4m/s. So using third law of motion i.e.
v^2 - u^2= 2as
(0)^2 - (25)^2= -2×4×s {Note here I used minus sign in acceleration}
-625 = -8×s
s=625 ÷ 8
s= 125 m
So bus would cover a distance of 125m before coming to rest.
Plans used for work that has to do with construction in or around Earth are called, “Civil Plans.”
Hope this helped!